Monetary Macroeconomics Lecture 2

Aggregate demand: Consumption and the Keynesian Cross

Mark Hayes

Outline

- Introduction
- Map of the AD-AS model

Short-run effects of an increase in demand

Outline

- Introduction
- Map of the AD-AS model
- This lecture, we begin explaining the AD curve
- Step 1: Equilibrium with variable income and consumption - the Keynesian Cross
- Various Multipliers

The Circular Flow I

The Circular Flow II

Income in Classical model

First step to AD - the Keynesian Cross

- A simple 'closed economy' model (*NX* exogenous) in which private consumption (*C*) is the only element of demand which varies
- Notation:
 - **I** = expected investment
 - E = C + I + G = expected expenditure
 - **Y** = real GDP = value of output

Elements of the Keynesian Cross

Consumption function:	$\boldsymbol{C} = \boldsymbol{c_1}(\boldsymbol{Y} - \overline{\boldsymbol{T}})$
Government consumption and tax:	$\boldsymbol{G}=\overline{\boldsymbol{G}}, \boldsymbol{T}=\overline{\boldsymbol{T}}$
for now, investment is exogenous:	$I = \overline{I}$
Expected expenditure:	$\boldsymbol{E} = \boldsymbol{c}_1(\boldsymbol{Y} - \boldsymbol{T}) + \boldsymbol{I} + \boldsymbol{G}$
equilibrium condition:	Y = E
Value of output = expected expenditure	

Plotting the equilibrium condition

slide 11

Plotting planned expenditure

The equilibrium value of income

An increase in autonomous consumption

Definition: the change in income resulting from a (small) change in autonomous expenditure such as *G* or *I*.

(In the following slides MPC = C_1)

The multiplier as a partial derivative

Y = C + I + G	equilibrium condition
$\Delta \boldsymbol{Y} = \Delta \boldsymbol{C} + \Delta \boldsymbol{I} + \Delta \boldsymbol{G}$	in changes
$= \Delta \boldsymbol{C} + \Delta \boldsymbol{G}$	because <i>I</i> exogenous
$= MPC \times \Delta \mathbf{Y} + \Delta \mathbf{G}$	because $\Delta C = MPC \Delta Y$

Collect terms with ΔY on the left side of the equals sign:

$$(1 - MPC) \times \Delta \boldsymbol{Y} = \Delta \boldsymbol{G}$$

Solve for
$$\Delta \boldsymbol{Y}$$
:
$$\Delta \boldsymbol{Y} = \left(\frac{1}{1 - \text{MPC}}\right) \times \Delta \boldsymbol{G}$$

In this model, the spending multiplier equals

$$\frac{\Delta Y}{\Delta I} = \frac{\Delta Y}{\Delta G} = \frac{1}{1 - MPC}$$

If MPC = 0.8

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{G}} = \frac{1}{1-0.8} = 5$$

An increase in *G* causes income to increase 5 times as much!

Why the multiplier is greater than 1

- An increase in *G* represents an equal increase in *Y*: $\Delta Y = \Delta G$.
- But $\uparrow \boldsymbol{Y} \Rightarrow \uparrow \boldsymbol{C}$

 \Rightarrow further $\uparrow \mathbf{Y}$

 \Rightarrow further $\uparrow C$

 \Rightarrow further $\uparrow Y$

■ So the final impact on income is much bigger than the initial △G. But not infinite, it converges.

Conventional explanation of convergence

Invented by Bill Phillips at the LSE. A waterdriven analogue computer used to demonstrate Keynesian economics

The flaw is that he used water, taking us back to a Classical corn model

slide 21

slide 22

www.sms.cam.ac.uk/media/1094078

An increase in taxes

Definition: the change in income resulting from a (small) change in T

The tax multiplier as a partial derivative

$$\Delta \mathbf{Y} = \Delta \mathbf{C} + \Delta \mathbf{I} + \Delta \mathbf{G}$$

$$= \Delta \mathbf{C}$$

$$= \Delta \mathbf{C}$$

$$= MPC \times (\Delta \mathbf{Y} - \Delta \mathbf{T})$$

Solving for $\Delta \mathbf{Y}$: $(1 - MPC) \times \Delta \mathbf{Y} = -MPC \times \Delta \mathbf{T}$

Final result:

$$\Delta \boldsymbol{Y} = \left(\frac{-\mathsf{MPC}}{1-\mathsf{MPC}}\right) \times \Delta \boldsymbol{T}$$

_ _ _ _

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{T}} = \frac{-\mathsf{MPC}}{1-\mathsf{MPC}}$$

If MPC = 0.8, then the tax multiplier equals

$$\frac{\Delta Y}{\Delta T} = \frac{-0.8}{1-0.8} = \frac{-0.8}{0.2} = -4$$

...is *negative:*

- A tax increase reduces *C*, which reduces income.
- ...is *greater than one* (*in absolute value*):
- A change in taxes has a multiplier effect on income.

...is *smaller than the spending multiplier:* Consumers save the fraction (1 - MPC) of a tax cut, so the initial boost in spending from a tax cut is smaller than from an equal increase in **G**.

The balanced budget multiplier

slide 29

The balanced budget multiplier

By definition:
$$\Delta G = \Delta T + t \Delta Y$$

Equilibrium Condition: $\Delta Y = c_1[(1-t)\Delta Y - \Delta T] + \Delta G$

$$\Delta Y = (1-t)c_1 \Delta Y - c_1 (\Delta G - t\Delta Y) + \Delta G$$
$$\Delta Y (1-c_1 + tc_1 - tc_1) = (1-c_1)\Delta G$$

$$\left. \frac{\Delta Y}{\Delta G} \right|_{BB} = \frac{1 - c_1}{1 - c_1} = 1$$

- Keynesian cross: equilibrium income determined with income and consumption variable
- Shows how the direction of causation between saving and investment is reversed from the Classical model
- The multiplier as comparative statics
 - Spending, tax and balanced budget multipliers
 - Comparing two equilibrium positions does not explain the dynamic process linking them

- Step 2 of building the AD curve
- Finding equilibrium when income, consumption and investment can all move
- the IS-LM model