

1

The DAD-DAS Equations	
$Y_t = \overline{Y_t} - \alpha \cdot (r_t - \rho) + \mathcal{E}_t$	Demand Equation
$r_t = i_t - E_t \pi_{t+1}$	Fisher Equation
$\pi_t = E_{t-1}\pi_t + \phi \cdot \left(Y_t - \overline{Y_t}\right) + v_t$	Phillips Curve
$E_t \pi_{t+1} = \pi_t$	Adaptive Expectations
$i_t = \pi_t + \rho + \theta_\pi \cdot (\pi_t - \pi_t^*) +$	$\theta_{Y} \cdot \left(Y_{t} - \overline{Y}_{t}\right)$
	Monetary Policy Rule

The model's variables and parameters • Exogenous variables: $\overline{Y_t} = Natural level of output$ $\pi_t^* = Central bank's target inflation rate$ $\varepsilon_t = Demand shock$ $V_t = Supply shock$ • Predetermined variable: $\pi_{t-1} = Previous period's inflation$

The model's variables and parameters

- Parameters:
 - α = Responsiveness of demand to the real interest rate
 - ρ = Natural rate of interest
 - ϕ = Responsiveness of inflation to output in the Phillips Curve
 - θ_{π} = Responsiveness of *i* to inflation in the monetary-policy rule
 - θ_{Y} = Responsiveness of *i* to output in the monetary-policy rule

A Series of Aggregate Demand Shocks

- Suppose the economy is at the long-run equilibrium
- Then a positive aggregate demand shock (ε>0) hits the economy for five successive periods, and then stops (ε = 0)
- How will the economy be affected in the short run?
- How will the economy adjust over time?

Parameter values for simulations	
$\overline{Y_t} = 100$	Thus, we can interpret $Y_t - \overline{Y}_t$ as the percentage deviation of output from its natural level.
$\pi_{t}^{*} = 2.0$	The central bank's inflation target is 2 percent.
$\alpha = 1.0$	A 1-percentage-point increase in the real interest rate reduces output demand by 1 percent of its natural level.
$\rho = 2.0$	The natural rate of interest is 2 percent.
$\phi = 0.25$	When output is 1 percent above its natural level, inflation rises by 0.25 percentage point.
$\theta_{\pi} = 0.5$ $\theta_{Y} = 0.5$	These values are from the Taylor Rule, which approximates the actual behavior of the Federal Reserve.

