Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Post-Keynesian Endogenous Business Cycle Models

Karsten Kohler

King's College London

karsten.kohler@kcl.ac.uk

10th Post Keynesian Economics Society Summer School, 9/6/2021

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix

Outline

- 2 Mainstream business cycle theory
 - Real business cycles
 - New Keynesian
- 3 Post-Keynesian business cycle theory
 - Kaldor
 - Minsky
- 4 Conclusion

5 Appendix

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

(1) Introduction

Appendix

Why booms and busts?

- capitalist economies are characterised by regular booms and busts
- during busts, many people become unemployed, while machines are idle
- shouldn't an efficient economy always fully employ its productive capacity?
- why is it that capitalist economies undergo these (inefficient) fluctuations?

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory
	00000	000
	0	000000

Conclusion

Appendix

Example: Ups and downs in UK unemployment

Mainstream business cycle theory

Appendix

Explanation I: Exogenous shocks

- in this view, fluctuations are driven by exogenous factors, e.g.
 - temporary changes in productivity (weather, oil prices, ...)
 - monetary policy, government spending
- the business 'cycle' represents the adjustment of the economy to shocks
- imperfections in the economy may amplify shocks, but they do not create cycles by themselves
- without shocks, the economy would not fluctuate
- \rightarrow this is the mainstream take on business cycles

Appendix

Explanation II: Endogenous cycle mechanisms

- in this view, fluctuations are driven by factors that are endogenous to capitalist economies, e.g.
 - over-investment (Kaldor)
 - financial fragility (Minsky)
 - distributive conflict (Goodwin)
- the business cycle is a genuine cycle: a regular sequence of booms and busts
- shocks can be a major source of fluctuations
- but: internal economic mechanisms turn those shocks into cycles
- \rightarrow this is the post-Keynesian take on business cycles

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Appendix

Building blocks of DSGE models

- economy consists of representative agents that intertemporally optimise in a world of scarce resources ('dynamic')
- e.g. household chooses a consumption path that maximises their lifetime utility
- economy is subject to random shocks, e.g. productivity shocks ('stochastic')
- the model has an equilibrium solution in which all agents maximise their objectives ('general equilibrium')

Appendix

Real business cycle theory

- 1st generation of DSGE (1980s)
- perfectly competitive markets; no frictions; no state; no money ('<u>real</u> business cycles')
- economic activity is determined by the supply side (capital stock, labour input, technology)
- a temporary productivity shock alters household's current and future consumption decisions → creates economic fluctuations
- business 'cycles' are the efficient adjustment to shocks; there's no need for policy

Appendix

Modelling real business cycles I

- consider a benchmark RBC model with two state variables (Romer 2011, chap.5)
- the capital stock (K_t) grows over time due to the saving decisions of households
- productivity (A_t) is subject to serially correlated exogenous shocks

$$K_t = f(K_{t-1}, A_{t-1})$$
(1)

$$A_t = g(A_{t-1}, \epsilon_t) \tag{2}$$

Jacobian matrix =
$$\begin{bmatrix} \frac{dK_t}{dK_{t-1}} & \frac{dKt}{dA_{t-1}} \\ 0 & \frac{dA_t}{dA_{t-1}} \end{bmatrix}$$
(3)

Mainstream business cycle theory

Post-Keynesian business cycle theory

Conclusion

Appendix

Modelling real business cycles II

Linearised (deterministic) version:

$$K_t = a_1 K_{t-1} + a_2 A_{t-1} \tag{4}$$

$$A_t = b_1 K_{t-1} + b_2 A_{t-1}, \qquad b_1 = 0 \tag{5}$$

$$J = \left[\begin{array}{cc} a_1 & a_2 \\ 0 & b_2 \end{array} \right] \tag{6}$$

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Shocks and fluctuations

$$K_{t} = a_{1}K_{t-1} + a_{2}A_{t-1}$$

$$A_{t} = b_{1}K_{t-1} + b_{2}A_{t-1}, \qquad b_{1} = 0$$

$$J = \begin{bmatrix} a_{1} & a_{2} \\ 0 & b_{2} \end{bmatrix}$$

- suppose there is a temporary increase in productivity $(\uparrow A_{t-1})$
- this allows for more saving, hence the capital stock increases (since a₂ > 0)
- this effect will die out slowly (because $a_1 > 0, b_2 > 0$)

Post-Keynesian business cycle theory 000 000000

Conclusion

Appendix

Example: Shock to A_0 and non-cyclical adjustment

 \rightarrow no genuine cycles, only fluctuations: 'cycle' driven by exogenous shocks; smooth return to equilibrium

Appendix

New Keynesian business cycle theory

- 2nd generation of DSGEs (late 1990s, 2000s)
- built on RBC, but more complex and with frictions (e.g. price/wage rigidity and imperfect competition)
- sticky prices and a flexible rate of capacity utilisation render the economy demand-determined in the short-run ('New Keynesian')
- frictions amplify exogenous shocks and can render the adjustment path inefficient
- but: fluctuations are still driven by shocks

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

(3) Post-Keynesian business cycle theory: Kaldor and Minsky

Appendix

Building blocks of PK business cycle models

- radical uncertainty about the future agents have to rely on social norms and rules of thumb (bounded rationality)
- economic activity is demand-driven, not only in the short-run
- capitalism creates fluctuations and crises by itself: endogenous cycles
- cycles are driven by interaction mechanisms, whereby key macroeconomic variables act upon each other in opposite directions

Appendix

Kaldor (1940): firms tend to over-invest

- firms form expectations based on past economic performance (uncertainty)
- in good times, this creates a tendency to over-invest
 - investment creates income through the Keynesian multiplier effect
 - if investment is very sensitive to income, this puts investment on an explosive path
- but for high levels of income, supply constraints will make investment inelastic with respect to income
- similarly, in a depressed economy, investment may become inelastic to income as there is always some investment to do
- thus, investment will only be temporarily be explosive

Appendix

Kaldor: output-capital stock interaction

- over time, higher output translates into a growing capital stock $\left(\frac{dK_t}{dY_{t-1}} > 0\right)$
- but a larger capital stock discourages further investment $(\frac{dY_t}{dK_{t-1}} < 0)$
- there is thus an interaction mechanism between output (Y_t) and capital (K_t), whereby both variables act upon each other in opposite ways

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	00		

Kaldorian cycles

---- K(t)

Appendix

Minsky: stability breeds instability

- during good times, private agents take on debt to finance expenditures
- this might be accompanied by rising asset prices (shares, real estate) that improve collateral values
- the economy gradually builds up more debt
- rising debt burdens eventually discourage spending
- agents cut back expenditures to reduce debt
- this creates a downward trajectory as income and asset prices fall

Mainstream business cycle theory

Conclusion

Appendix

Minsky: output-debt interactions

- the two interacting variables are output (Y_t) and private debt
 (D_t)
- there is a cyclical interaction mechanism such that
 - higher output stimulates more debt $\left(\frac{dD_t}{dY_{t-1}} > 0\right)$
 - higher debt reduces output $\left(\frac{dY_t}{dD_{t-1}} < 0\right)$

Mainstream business cycle theory

Post-Keynesian business cycle theory ○○○ ○○●○○○

Conclusion

Appendix

Minskyan business & financial cycles

----- D(t)

Mainstream business cycle theory

Appendix

Modelling endogenous business cycles

- endogenous cycle models critically depend on cyclical interaction mechanisms
- consider a simple Minsky model in output (Y_t) and debt (D_t)

$$Y_t = a_1 Y_{t-1} + a_2 D_{t-1}$$
$$D_t = b_1 Y_{t-1} + b_2 D_{t-1}$$
$$J = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$

- suppose that the interaction between Y_t and D_t is $a_2 \cdot b_1 < 0$
- this interaction has opposite signs: Y_{t-1} drives up D_t $(b_1 > 0)$, but D_{t-1} drags down Y_t $(a_2 < 0)$
- this interaction needs to be sufficiently strong: $|a_2b_1| > \frac{(a_1-b_2)^2}{4}$

Mainstream business cycle theory

Post-Keynesian business cycle theory

Conclusion

Appendix

Example: Shock to Y_0 and cyclical adjustment

 \rightarrow genuine cycles and equilibrium over-shooting

1				
Int			CTI	on
	10	uu	CLI	

Post-Keynesian business cycle theory ○○○ ○○○○●

Conclusion

Appendix

Comparison with RBC model

 \rightarrow no genuine cycles, only fluctuations: 'cycle' driven by exogenous shocks; smooth return to equilibrium

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

(4) Summary & conclusion

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix

Conclusion

- post-Keynesian theories highlight the endogenous nature of business cycles
- cycles are driven by interaction mechanisms where variables act upon each other in opposite directions
- Kaldorian models: cyclical interactions between output and capital
- Minskyan models: cyclical interactions between output and private debt
- these interaction mechanisms are an outcome of decentralised decision-making by boundedly rational agents: no anticipation of boom-bust dynamics and resulting inefficiencies

Appendix

Why does it matter? Policy implications

How we conceptualise business cycles has important implications:

	Exogenous shocks (mainstream)	Endogenous cycles (PK)
Vision of capitalism	intrinsically stable system; distorted only by external influences	unstable & inefficient system that leads to crises
Explaining busts	identify relevant shock $+$ friction	identify source of prior boom
Policy implication	ightarrow leave economy alone, deregulate	\rightarrow take political control over sources of instability (e.g. investment and finance)

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Appendix I: Limit cycles

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix

Limit cycles I

- to get fully endogenous cycles, we need one more ingredient: local instability
 - suppose the system is explosive near its equilibrium point
 - but as it gets pushed away from the unstable equilibrium, it becomes stable again
- local instability can stem from specific types of nonlinearities
- together with a cyclical interaction mechanism, this can produce so-called *limit cycles*

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix

Limit cycles II

Let's start from a more general system:

$$y_t = f(y_{t-1}, z_{t-1})$$

 $z_t = g(y_{t-1}, z_{t-1}).$

Suppose at least one of the functions $f(\cdot)$ and $g(\cdot)$ is nonlinear and $\left(\frac{dy_t}{dz_{t-1}}\right)\left(\frac{dz_t}{dy_{t-1}}\right) < 0.$

For certain kind of nonlinearities, this yields fully endogenous cycles.

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix

Limit cycles III

Consider the following example:

$$y_t = f(y_{t-1}) + a_2 z_{t-1}$$
(7)

$$z_t = b_1 y_{t-1} + b_2 z_{t-1},$$
(8)

where $f'(y^*) \in (0,1)$, $f''(y^*) > 0$, $f'''(y^*) << 0$.

A function that meets these criteria is the logistic function: $f(y_{t-1}) = a_1 \frac{1}{e^{-y_{t-1}}}.$

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Logistic function: $\frac{1}{e^{-y_{t-1}}}$

S-shapedbounded

Introduction	Mainstream business cycle theory 00000 0	Post-Keynesian business cycle theory 000 000000	Conclusion	Appendix
1 :	valaa IV/			

- Limit cycles IV
 - the S-shaped function will generate very strong feedback from y_{t-1} on y_t for average values of y_{t-1}
 - this makes the system unstable close to the equilibrium (which is the average)
 - but for very large or very low values of y_{t-1}, the feedback becomes weak
 - therefore, the system becomes stable far away from the equilibrium
 - together with an interaction mechanism, this can set the system in permanent motion:
 - close to the equilibrium, it gets pushed away
 - then the destabilising forces gradually become weaker
 - the second variable will eventually pull it back

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendi
	00000	000		

Example: Limit cycle

 \rightarrow shock-independent fluctuations: fully endogenous cycle

Introduction	Mainstream business cycle theory	Post-Keynesian business cycle theory	Conclusion	Appendix
	00000	000		

Appendix II: Empirical evidence for endogenous cycles

Appendix

Can the existence of endogenous cycles be proven?

- the short answer is no
- but we can check whether it's consistent with the data
- a common argument against endogenous cycles is that many macroeconomic time series are very irregular
- but if we combine an endogenous cycle model with (autocorrelated) shocks, we also get fairly random series
- let's compare this with some de-trended series for the UK

Introduction
Introduction

Post-Keynesian business cycle theory

Conclusion

Appendix

Stochastic limit cycle

This is the same system as above, but with AR(1) error terms u_t added to each equation: $u_t = 0.8u_{t-1} + \epsilon_t$, where $\epsilon_t \sim N(0, 1)$.

Mainstream business cycle theory

Post-Keynesian business cycle theory

Conclusion

Appendix

UK GDP and corporate debt, cyclical components

$$x_{t+8} = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \beta_3 x_{t-2} + \beta_4 x_{t-3} + \nu_{t+8}$$
 (see Hamilton 2018, *Rev Ec & Stat*).

Appendix

Finding periodic cycles in the data

- if GDP and corporate debt were driven by a Minskyan endogenous cycle mechanism + shocks, we would expect to find *some* regularity in the data
- a time series tool that allows to detect periodic cycles are spectral density functions (SDFs)
- an SDF shows how much of the variance in a time series is due to periodic frequencies
- peaks in a SDF suggest there is a dominant periodic cycle
- by contrast, if the SDF has no peak, fluctuations are irregular

Mainstream business cycle theory

Post-Keynesian business cycle theory

Conclusion

Appendix

Stochastic limit cycle vs stochastic fluctuations

- first simulated series has cycle mechanism $a_2b_1 < 0$, second doesn't
 - Can the SDF detect the difference?

Mainstream business cycle theory

Post-Keynesian business cycle theory 000 000000

Conclusion

Appendix

Limit cycle vs stochastic fluctuations: SDFs

Note: Parametrically estimated spectral density functions from ARMA model.

- It can!
- How does it look with real data for GDP and corporate debt?

Mainstream business cycle theory

Post-Keynesian business cycle theory

Conclusion

Appendix

SDFs of UK GDP and corporate debt

■ GDP and corporate debt exhibit regular cycles of 9 1/2 and 11 1/2 years length

this is consistent with endogenous cycles