Fiscal policy and ecological sustainability: a post-Keynesian perspective

Yannis Dafermos¹ Maria Nikolaidi²

¹University of the West of England

²University of Greenwich

29th PKES Annual Workshop, 29 May 2019, Goldsmiths

• • • • •

- In post-Keynesian economics, fiscal policy plays a key role (e.g. Arestis and Sawyer, 2010; Hein and Stockhammer, 2010). However, fiscal policy for ecological sustainability has only recently received some attention.
- There are various forms of green fiscal policies:
 - Environmental taxes (e.g. carbon taxes)
 - Q Green subsidies(e.g. feed-in tariffs)
 - Green public investment
 - Research and development in green technologies
 - Green job guarantee programmes

- Environmental taxes: Bovari et al (2018), D'Alessandro et al (2018), Mercure et al (2018)
- Green subsidies: Bovari et al (2018), Mercure et al (2018), Monasterolo and Raberto (2018, 2019)
- Research and development in green technologies: Deleidi et al (2019)
- Green job guarantee programmes: Godin (2012), D'Alessandro et al (2018)

Image: Image:

- A IB 🕨 A IB 🕨

- The existing studies have not systematically compared carbon taxes with other types of green fiscal policies with an explicit reference to their combined effects on economic, financial and environmental variables.
- We provide such a comparative evaluation using the DEFINE model (see Dafermos, et al, 2017, 2018). For more information, see: www.define-model.org
- This model combines a detailed financial system with environmental modules on climate change and the use of matter and energy.

イロト イポト イヨト イヨト

- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results

Comparing IAMs/CGEs with PK models

Modelling green fiscal policies Calibration/estimation and validation Simulation results Conclusion

1 Comparing IAMs/CGEs with PK models

- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results
- 5 Conclusion

Comparing IAMs/CGEs with PK models

Modelling green fiscal policies Calibration/estimation and validation Simulation results Conclusion

Key differences between IAMs/CGEs and PK ecological models

IAMs/CGE models	Post-Keynesian ecological models
Supply-determined output	Demand-determined output (with supply-side constraints)
Mitigation represents only a cost	Mitigation is both a cost and a source of income
Banks are financial intermediaries	Money is endogenous
Utility and profit maximisation	Fundamental uncertainty/bounded rationality
Environmental problems as externalities	Systems approach to the environmental issues

Y. Dafermos, M. Nikolaidi

≥ ▶ < ≥ ▶ 3</p>
29/05/2019

7 / 34

Image: Image:

Comparing IAMs/CGEs with PK models

- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results
- 5 Conclusion

The model consists of two big blocks and various sub-blocks.

Ecosystem

- Matter, waste and recycling
- Energy
- Emissions and climate change
- Ecological efficiency and technology

Macroeconomy and financial system

- Output determination
- Firms
- Households
- Banks
- Government sector
- Central banks

29/05/2019 9/34

Physical flow matrix

	Material	Energy
	balance	balance
Inputs		
Extracted matter	+M	
Renewable energy		+ER
Non-renewable energy	+CEN	+EN
Oxygen used for fossil fuel combustion	+02	
Outputs		
Industrial CO ₂ emissions	-EMIS IN	
Waste	-W	
Dissipated energy		-ED
Change in socio-economic stock	- <i>ASES</i>	
Total	0	0

29/05/2019

<ロ> <()</p>

10 / 34

æ

Physical stock-flow matrix

	Material reserves	Non-renewable energy reserves	Atmospheric CO ₂ concentration	Socio- economic stock	Hazardous waste
Opening stock	REV_{M-1}	REV_{E-1}	CO2_AT-1	SES .1	HWS.1
Additions to stock					
Resources converted into reserves	$+CON_M$	$+CON_E$			
CO2 emissions			+EMIS		
Production of material goods				+MY	
Non-recycled hazardous waste					+bazW
Reductions of stock					
Extraction/use of matter or energy	-M	-EN			
Net transfer of CO2 to oceans/biosphere			$+(\phi_{11}-1)CO2_{AT-1}+\phi_{21}CO2_{UP-1}$		
Demolished/disposed socio-economic stor	k			-DEM	
Closing stock	REV_M	REVE	CO2_AT	SES	HWS

Y. Dafermos, M. Nikolaidi

29/05/2019

э

э

11 / 34

(日) (同) (三)

Transactions flow matrix

	Househ	olds	Finns		Commerce	ial banks	Govenny	int sector	Central banks		Total
	Current	Capital	Corrent	Capital	Current	Capital	Corrent	Capital	Current	Capital	-
Private consumption expenditures		Cm	+C (98)								0
Goveniment consumption expenditures			+C (001)				Cont				0
Conventional investment			+SI crea +I com	-SI COMPA				J (1001)			0
Green investment			+SI array +Lagon	-SI Gray				Jacon			0
Green subsidies			+SUB				-SUB				0
Household disposable income net of depreciation	-Y sp	$+Y_{BD}$									0
Wages	$+_{M2}N$		-32N								0
Goveniment balance							-GB	+GB			0
Taxes	$-T_{R}$		$T_F T_C$				+T				0
Firms' profits	+DP		-TP	+RP							0
Commercial banks' profits	+BP 2				BP	+BP v					0
Interest on deposits	+int_DD.,				dist D						0
Depreciation of green capital			-SEK GPRON	+SEK GPRIN			-dK avant >1	+6K 0,00157			0
Depreciation of conventional capital			-SEK COPRAGE	+OEK CORDA			-dK (1001)1	+6K 000121			0
Interest on conventional loans			-Eleta Last		+Ent a Lan						0
Interest on green loans			-Elsta Lau		+EINGLOU						0
Interest on conventional bonds	+ coopen c b cm		-company of b cut						+rangen c b con-		0
Interest on green bonds	+resident a b and		-conten a b ar						+cooper a b actua		0
Interest on government securities	+INT SEC NJ				+ist, SEC		int, SEC .		+int, SEC and		0
Interest on advances					IN A.				+107		0
Depreciation of durable consumption poods	-EDC -	+EDC -									0
Central bank's profits							+CBP		-CBP		0
Bailout of banks						+B.4ILOUT	-B.4ILOUT				0
Adeposits		-4D				+_1D					0
Aconventional loans				+EdLa		-EAL a					0
Agreen loans				+5_1L av		-E.AL av					0
Aconventional bonds		30 Abox		+70230c						30 Alex	0
Agreen bonds		Padban		+70-180						Polloca	0
Agoveniment securities		ASEC.				USEC.		+ASEC		ASEC	0
Aadvances						+44				-14	0
Ahigh-powered money						-AHPM				+_1HPM	0
Defaulted loans				+DL		-DL					0
Total	0	0	0	0	0	0	0	0	0	0	0

Y. Dafermos, M. Nikolaidi

Balance sheet matrix

	Households	Firms	Commercial banks	Government sector	Central	Total
					banks	
Conventional capital		$+\Sigma K_{C(PRI)i}$		$+K_{C(GOV)}$		$+K_C$
Green capital		$+\Sigma K_{G(PRI)i}$		$+K_{G(GOV)}$		$+K_G$
Durable consumption goods	+DC					+DC
Deposits	+D		-D			0
Conventional loans		$-\Sigma L_G$	$+\Sigma L_G$			0
Green loans		$-\Sigma L_{Gi}$	$+\Sigma L_{Gi}$			0
Conventional bonds	$+\overline{p}_{C}b_{CH}$	$-\overline{p}_{C}b_{C}$			$+\overline{p}_{C}b_{CCB}$	0
Green bonds	$+\overline{p}_G b_{GH}$	$\overline{p}_G b_G$			+pcbGCB	0
Government securities	$+SEC_{H}$		$+SEC_B$	-SEC	+SEC _{CB}	0
High-powered money			+HPM		-HPM	0
Advances			-A		+A	0
Total (net worth)	$+V_H$	$+V_F$	+CAP	$-SEC+K_{C(GOV)}+K_{G(GOV)}$	+1/ _{CB}	$+K_C+K_G+DC$

13 / 34

æ

Investment and finance

- Firms have a desired overall **investment** which depends, amongst other factors, on the profit rate and the rate of capacity utilisation.
- Part of their investment is green. The proportion of green investment depends, amongst others, on carbon taxes and green subsidies.
- Firms finance desired green investment via (1) retained profits; (2) bonds; (3) bank loans.
- There is credit rationing: only a proportion of the demanded loans are provided by banks. Interest rate is also endogenous.

★ Ξ →

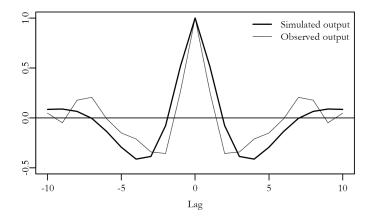
- Firms have to pay **taxes** based on the carbon emissions that they generate.
- The government covers a proportion of green private investment spending via green subsidies.
- The government undertakes both green and conventional investment.
- **Public investment** increases public capital. As green capital becomes higher (compared to conventional capital), energy efficiency and the share of renewables increases.

29/05/2019

• = • •

- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results
- 5 Conclusion

Calibration/estimation of the model:


- We use a mix of calibration and estimation techniques.
- We estimate some functions (such as investment, consumption and credit provision) using panel data for the global economy.
- We calibrate some parameter values using data or other studies.
- We develop a baseline scenario and then conduct sensitivity and policy analysis.

Baseline scenario:

- Economic growth is, on average, slightly lower than 2.5% till 2050.
- Population becomes 9.77bn people in 2050.
- Very slow transition to a low-carbon economy.
- Share of renewable energy increases (from 14% in 2017) to 25% in 2050.
- Energy intensity improves by 30% till 2050.
- The default rate on corporate loans is around 4% till 2050.

< ∃ → <

Auto-correlation: output

< A

29/05/2019 19 / 34

Outline

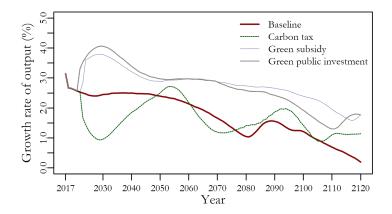
- 1 Comparing IAMs/CGEs with PK models
- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results

5 Conclusion

- We assume that in 2022 green fiscal policies are introduced in the following ways:
 - Carbon tax: The carbon tax increases to 16 US dollars per tonne of CO₂ (this corresponds to 80 US dollars for the emissions currently covered by a carbon pricing scheme).
 - ② Green public subsidies: The green public subsidies provided by the government increases from 28% to 60% (as a proportion of green investment)
 - ③ Green public investment: The green investment of the government increases from 0.25% to 1% (as a proportion of GDP)

Key similarities and differences between the three green fiscal policies

	Increase in carbon tax	Increase in green subsidy rate	Increase in public green investment
Economic growth	Declines	Increases	Increases
Transition financial risks	Yes	No	No
Physical financial risks	Decline moderately	Decline	Decline
Public indebtedness	Increases	Declines moderately	Declines moderately
Global warming	Declines moderately	Declines	Declines


Y. Dafermos, M. Nikolaidi

Fiscal policy and ecological sustainability

29/05/2019

イロト イポト イヨト イヨト

Growth rate of output

29/05/2019 23 / 34

Key similarities and differences between the three green fiscal policies

		8	Increase in public green
	tax	subsidy rate	investment
Economic growth	Declines	Increases	Increases
Transition financial risks	Yes	No	No
Physical financial risks	Decline moderately	Decline	Decline
Public indebtedness	Increases	Declines moderately	Declines moderately
Global warming	Declines moderately	Declines	Declines

Y. Dafermos, M. Nikolaidi

Fiscal policy and ecological sustainability

29/05/2019

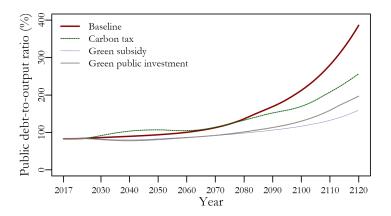
イロト イポト イヨト イヨト

Default rate

29/05/2019 25 / 34

Key similarities and differences between the three green fiscal policies

	Increase in carbon tax	Increase in green subsidy rate	Increase in public green investment
Economic growth	Declines	Increases	Increases
Transition financial risks	Yes	No	No
Physical financial risks	Decline moderately	Decline	Decline
Public indebtedness	Increases	Declines moderately	Declines moderately
Global warming	Declines moderately	Declines	Declines


Y. Dafermos, M. Nikolaidi

Fiscal policy and ecological sustainability

4 ≥ > < ≥ > 29/05/2019

Image: Image:

Public debt-to-output ratio

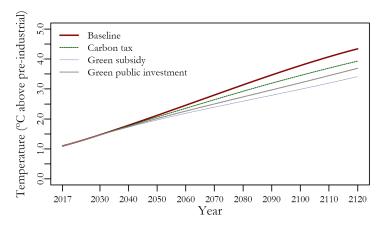
Y. Dafermos, M. Nikolaidi

29/05/2019 27 / 34

Key similarities and differences between the three green fiscal policies

	Increase in carbon tax	Increase in green subsidy rate	Increase in public green investment
Economic growth	Declines	Increases	Increases
Transition financial risks	Yes	No	No
Physical financial risks	Decline moderately	Decline	Decline
Public indebtedness	Increases	Declines moderately	Declines moderately
Global warming	Declines moderately	Declines	Declines

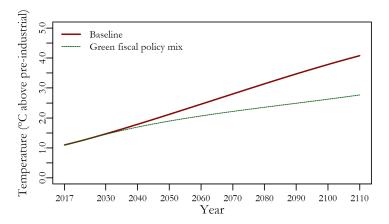
Y. Dafermos, M. Nikolaidi


Fiscal policy and ecological sustainability

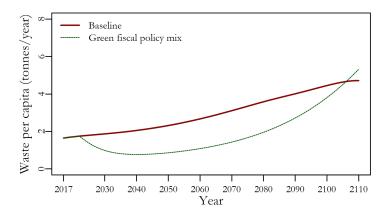
29/05/2019

< ∃ →

Image: Image:


Atmospheric temperature

29/05/2019


- We assume that in 2022 we combine all the above mentioned policies simultaneously
 - Intersection of the second second
 - Ø Green investment increases more
 - Oarbon emissions decline much more. As a result, physical climate-related financial risks are much less pronounced.

Atmospheric temperature

29/05/2019 31 / 34

Waste per capita

Y. Dafermos, M. Nikolaidi

29/05/2019 32 / 34

э

- 1 Comparing IAMs/CGEs with PK models
- 2 Modelling green fiscal policies
- 3 Calibration/estimation and validation
- ④ Simulation results

- Carbon taxes can reduce global warming but at the same time they can give rise to a type of climate Minsky moment.
- Green subsidies and green public investment have positive environmental effects but with some macroeconomic rebound effects.
- A green fiscal policy mix is more effective from both an environmental and an economic/financial point view. However, there are some material depletion and waste generation problems in the very long run.
- A green fiscal policy mix might not be enough to achieve 2 degrees. Regulation, green finance policies and a change in consumption patterns need to accompany such a mix.

・ 同 ト ・ ヨ ト ・ ヨ ト