PKES 2019 workshop

The contribution of post-Keynesian economics to climate policy and meeting global decarbonisation targets

Hector Pollitt hp@camecon.com, @HectorPollitt

29/05/2019

Overview

- The three policy phases
 - Nordhaus, etc
 - the Integrated Assessment Models
 - analysis of specific policies
- Key issues and limitations in existing modelling approaches
- Why we need more post-Keynesian engagement

The early days

- Economists asked the question about whether we should do anything about climate change
- The DICE 'Integrated Assessment Model' was designed to assess the trade-off between the costs of reducing GHG emissions and the costs of a changing climate
- Other similar models followed

The early days (cont)

- These models are based on simple cost-optimisation functions
- They essentially say that climate change should be prevented until the marginal cost exceeds the marginal benefit

FIGURE 2. OVERVIEW OF MODEL OPTIMIZING THE ENERGY-ENVIRONMENT SYSTEM

Source: Nordhaus (1977)

The early days (cont)

- Are these models consistent with post-Keynesian economics? No!
 - they assume perfect information and are based on assumptions about rational behaviour
- They suffer from other shortcomings too:
 - sensitivity to choice of discount rates
 - sensitivity over damage functions, especially in high-carbon scenarios
 - treating irreversible changes as reversible
- The latest DICE model runs suggest that 3.5°C of warming is optimal, highly at odds with climate science

The early days (cont)

- Weitzman's 2009 'dismal theorem' argued against using these models because they neglected uncertainty
 - the probability of catastrophic change was assumed to be zero
- Natural scientists pushed for limits on temperature change, in part based on the 'precautionary principle'

Finding achievable targets

- The next question was to understand what targets for temperature change are feasible
- A new generation of 'Integrated Assessment Models' was applied to assess different temperature targets
- These models are much larger in scale, for example with substantial detail on energy technologies and land use patterns
- However, they do not generally include climate damages

Finding achievable targets (cont)

- Are these models consistent with post-Keynesian economics? Again, no!
 - in general, they are cost-optimising tools that rely on fully rational behaviour, perfect information and sometimes perfect foresight
 - they are used to assess whether an outcome is technologically feasible, not whether it will happen
 - low-carbon scenarios are modelled as constraints on the technologies that may be chosen
- But, they do provide economic estimates of 'costs'...

Finding achievable targets (cont)

- This chart is taken from the IPCC's 5th Assessment Report
- The models almost exclusively show GDP losses (sometimes large) of decarbonising
- A narrative that 'climate policy always costs' has been developed

Source: Clarke et al (2014)

The present day situation

- The Paris Agreement has set targets of 2°C, ideally 1.5°C for limiting temperature change
 - the early models like DICE are now redundant
- National targets for reducing GHG emissions have been set – although they need to be scaled up to be consistent with global targets
- Policy makers need to know:
 - the impacts of policies to meet these targets
 - how they might increase the ambition of these targets
- Is there a role for post-Keynesian economics here?
 Yes!

Why we need P-K economics (1)

- The political economy of climate change is immensely important
- There are trade-offs between population groups, countries and generations; and also between social and environmental outcomes
- These issues are highly complex and cannot be reduced to cost-benefit analyses

Why we need P-K economics (2)

- A diverse range of policies is required to decarbonise
- Models must be able to incorporate regulatory as well as price-based instruments
- Policy makers are not interested in 'a global carbon price'

Why we need P-K economics (3)

- Analyses must be able to account for uncertainty and non-fully rational behaviour
- For example, there are many cost-efficient energy efficiency options that are not taken up
- We do not know the future path of technology – investors base decisions on current (incomplete) knowledge

Why we need P-K economics (4)

- A low-carbon transition is investment-intensive, it needs finance!
- Models with an exogenous money supply show spurious 'crowding out' impacts, i.e. suggest that more investment is bad for the economy

Source: Mercure et al (2019)

Why we need P-K economics (4b)

- Conversely, only post-Keynesian models can show stranded assets because they accept both uncertainty and that capital cannot be instantly reallocated
 - the financial community is now highly interested in this topic
 - our own results suggest that \$1-4trn are at stake

Why we need P-K economics (5)

- Technology is central to any low-carbon transition
- Models of a low-carbon transition must allow the pace and direction of technology to be influenced by policy

Our work at Cambridge Econometrics

- The E3ME macro-econometric model:
 - 61 world regions
 - 43 sectors in each region

Table 14: GDP impacts in EU28 in 2030¹⁰⁷

Table 14: GD1 impacts in EC20 in 2000			More ambitious			
% change from EUCO27	Ref2016 ¹⁰⁸ (bn €2013)	EUCO27 (bn €2013)	EUCO30	EUCO+33	EUCO+35	EUCO+40
E3ME (no crowding out)	17,928	18,045	0,39	1.45	2.08	4.08
E3ME (partial crowding out)	17,928	18,045	0.39	1.30	1.58	2.21
GEM-E3 (loan-based)	16,955	16,962	0.26	0.21	0.16	0.06
GEM-E3 (self-financing)	16,955	16,907	-0.22	-0.79	-1.35	-2.12

Source: E3ME, Cambridge Econometrics and GEM-E3, National Technical University of
Athens
Source: Energy Efficiency Directive Impact Assessment, p52

Concluding remarks (1)

- Neoclassical economics suggests that a single EU carbon price would reduce emissions in the 'optimal' way
- The EU has three targets for decarbonisation:
 - targets for energy efficiency, mainly met through regulation
 - a GHG reduction target, for which carbon pricing is important
 - targets for the use of renewables, to help new technologies mature
- Other countries are now asking what their policy mix should be

Concluding remarks (2)

- Current policy is hampered by a view that investment in low-carbon technologies always has an economic cost
- We need modelling that does not result in costs by assumption if necessary policies are to be implemented

The Political Climate

The environment could be a vote loser if it is associated only with economic cost

In the Australian election what hannened to Tony — tional economic message of getting on seems to

There is no question that climate change is a

Source: The Times, 20 May, 2019

Final slide

- Historically, post-Keynesian economics has only provided a limited input to climate policy analysis
- If this does not change, then:
 - it will not be possible to assess some policies
 - policy makers could be given misleading results

Resources

- My contact details:
 - <u>hp@camecon.com</u>
 - @HectorPollitt
- E3ME website: www.e3me.com
- References:
 - Mercure, J-F, H Pollitt, L Paroussos, R Lewney and S Scrieciu (2019)
 'Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use', Climate Policy, in press.
 - Nordhaus, WD (1977) 'Economic Growth and Climate: The Carbon Dioxide Problem', American Economic Review, Vol. 67, No. 1, pp 341–346.
 - Weitzman, ML (2009) 'On modeling and interpreting the economics of catastrophic climate change', Review of Economics and Statistics, Volume 91(1), pp 1-19.

PKES 2019 workshop

The contribution of post-Keynesian economics to climate policy and meeting global decarbonisation targets

Hector Pollitt hp@camecon.com, @HectorPollitt

29/05/2019