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Abstract

This paper is concerned with the problem of modelling the tail of the wealth distribution
with survey data in the context of differential nonresponse. In order to deal with the problem
post data collection, it is standard practice to combine wealth survey data with observations
from rich lists and then fit a Pareto tail. In contrast, our approach does not require information
about individual wealth holdings from rich lists and is thus applicable in situations where such
information is not available. Applying the procedure to wealth survey data (HFCS, SCF, WAS)
yields estimates of top wealth shares, which are closely in line with estimates from the World
Inequality Database and thus represent a likely improvement over the raw survey data.
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1 Introduction

The last decade saw the publication of several novel data sources suitable for studying the distribu-
tion of wealth. Among these are the World Inequality Database (www.wid.world), the Household
Finance and Consumption Survey (HFCS) carried out under the auspices of the ECB, the UK’s
Wealth and Asset Survey (WAS) as well as efforts to use data leaks on offshore wealth holdings
Alstadsæter, Johannesen, and Zucman (2019). For the United States the Survey of Consumer Fi-
nances (SCF) has been conducted regularly and consistently since 1989 and is considered as the
most reliable source for assessing the distribution of private wealth. In Europe, three waves of the
HFCS (2011, 2014, 2017) have already been conducted; however, currently only the first two waves
are available to the research community and provide information on the distribution of wealth for
15 (wave 1) respectively 20 (wave 2) EU countries. For many of these countries this data source
is a true novelty as reliable alternative data sources for assessing the distribution of private wealth
have not been available before. In addition, recent works by Piketty, Saez, and Zucman (2016) and
Saez and Zucman (2016) are of special relevance as they move towards producing data on wealth
that are consistent with micro (Survey of Consumer Finances, SCF) as well as macro (Financial
Accounts) sources.

High quality data on the distribution of wealth is crucial not only for better understanding the
dynamics of growth and accumulation, but also to allow for a better informed public debate on
distributional issues and to assess the role of private wealth in terms of tax policy. Traditionally,
two forms of micro-data have been used to obtain information on the distribution of wealth: data
from surveys such as the HFCS or the SCF as well as data from administrative sources, especially
tax authorities. While traditionally conceived as rival approaches, which both come with their own
limitations (Piketty, 2014), Saez and Zucman (2016, p. 569) point out that survey and administrative
data can be used as complements in order to derive a more detailed and fine-grained assessment
of the distribution of wealth. Indeed the fruitful effort of constructing Distributional National
Accounts (Piketty et al., 2016) relies on a combination of survey, tax and national accounts data
to arrive at a picture of the distribution of wealth that is as accurate as possible. Nevertheless, an
obvious backdrop of this strategy is that administrative (tax) data is often not available for research
purposes. In these cases, surveys are the key means to collect information about the distribution of
household wealth.

Collecting and applying survey data comes with challenges. For one, estimates derived from
surveys that come without a suitable oversampling strategy suffer from median-bias1 and thereby
typically underestimate the share of wealth held in the tail of the distribution (Eckerstorfer et
al., 2016). For another, the probability of participating in such surveys is negatively correlated
with household wealth itself, a phenomenon known as differential nonresponse. The evidence for
differential nonresponse is compelling and can be illustrated with reference to the SCF, where tax
data on capital incomes are used to identify affluent households prior to data collection. While the
response rate in the stratified random sample is about 70%, it sharply decreases for the so-called
list sample of affluent households, which are ex ante identified based on tax records. Here, even
the poorest stratum has a response probability of only 50%, which further decreases to 12% for the
stratum of the wealthiest households (Bricker, Henriques, Krimmel, & Sabelhaus, 2016, p. 282).
Similarly, D’Alessio and Faiella (2002) report a response rate of 26% for the lowest wealth group
which declines to 9% in the highest wealth group when in 1998 anonymized data from a commercial
bank was used to identify affluent individuals in an oversampling effort for the Italian wealth survey.
For the HFCS Osier (2016) emphasizes that nonresponse rates are not random and that additional
data especially on income or wealth would be desirable to improve sample designs.

In this paper we focus on the issue of differential nonresponse. In practical terms there are
three approaches to this problem: The first, is to do nothing, use the data as it is and to assume
that the efforts made by the administrators of the survey were sufficient to deal with the problem.
Most importantly this would require a strong over-sampling strategy where information which is
available already prior to data collection, is used to identify wealthy households and include a
disproportionate amount of them in the gross sample to ensure enough responses despite a lower

1Median bias refers to a situation where the median of the sampling distribution of the Pareto alpha estimator is
different from the population parameter which the researcher aims to estimate.
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response probability. The second approach is to fit a Pareto distribution to the tail of the survey
data and use the estimated distribution to describe the tail instead of the tail observations (Jayadev,
2008; Eckerstorfer et al., 2016). The third approach extends the second by adding journalists’ rich
lists like the "Forbes 400" for the US or the "Manager Magazin" for Germany to the original survey
data. The resulting data set is then used to estimate a Pareto distribution (Vermeulen, 2018) and
subsequently the fitted distribution is applied to describe the tail of the wealth distribution.

This paper aims to add a fourth approach to this list, the rank correction approach. It relies
on much less external information compared to the rich list approach and yields better results than
the first two. This means the rank correction approach can be used when the rich list approach is
not feasible due to the lack or poor quality (Capehart, 2014; Kopczuk, 2015) of rich list data. This
advantage will become apparent when applying the method to actual data (section 5). In addition
the rank correction approach can be regarded as a substitute and robustness check for the rich list
approach with the main advantage that all modelling assumptions are made in a transparent and
explicit way. This is in contrast to the reliance on rich lists where key methodological aspects as
well as differences across countries are left in the dark.

The core idea of the rank correction approach is to correct the ranks of the sample observations
(i.e. the cumulative sum of the survey weights) in order to take into account that the most affluent
households are much less likely to be included in the sample. This preserves the linearity of the
relationship between logarithms of household wealth and rank (cumulative weights) underlying the
Pareto distribution, which is exploited when fitting the distribution to the data. We will demonstrate
that this simple adjustment is able to substantially reduce the bias from differential nonresponse
when fitting a Pareto distribution to the tail of the available survey data.

Applying such an approach to the second wave of the HFCS data shows that the average estimate
of the Pareto tail index declines from 2.4 obtained from a baseline regression without rank correction
to 1.9 after implementing the rank correction procedure. Using these Pareto tails to replace the
tail from the survey leads to an average increase of aggregate wealth by 5%. Correspondingly, the
average top 1% wealth share increases from 16.8% to 20% and the average top 0.1% share from 5%
to 8% . Comparing these results with exogenous sources on the distribution of wealth indicates that
the rank correction procedure improves upon raw survey measures. For example the WID provides
top 1% wealth shares for the US, France and the UK (37%, 23.4% and 19.9%) which compare very
well with the rank correction approach (37.6%, 22.6% and 17.3%). This outcome represents a clear
improvement relative to the top wealth shares obtained from the raw survey data (35.4%, 18.7%
and 15.1%).

The rest of the paper is organised as follows. Section 2 introduces the rank correction approach.
Section 3 analyses the performance of the rank correction procedure by means of Monte Carlo
simulations. In Section 4 we introduce two rules of thumb which are suitable to guide the imple-
mentation of the rank correction approach in practice. Section 5 contains an application to data
from the HFCS, SCF and WAS. Section 6 contains a summary and concludes.

2 The Rank Correction Approach

2.1 Fitting Pareto tails to wealth survey data: the standard approach

The standard approach of fitting a Pareto tail to wealth survey data is to fit the complementary
cumulative distribution function (CCDF) of the Pareto distribution to the empirical CCDF derived
from the available sample. The theoretical CCDF for a random variable X following a type I Pareto
distribution is defined as follows 2:

CCDFT (xi) = Pr(X > xi) =

(
xm
xi

)α
(1)

Let’s assume a sample of households with net wealth x = (x1, . . . , xn) and corresponding survey
weights w = (w1, . . . , wn), where the number of households represented by the available sample is
defined as N =

∑n
i=1wi. Arranging the data in descending order (i.e., from the most to the least

2Throughout the paper we refer to type I Pareto distributions when we talk about Pareto distributions.
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affluent observation) yields a data vector denoted as xd = (x(1), . . . , x(n)) with the corresponding
vector of weights wd = (w(1), . . . , w(n)). Then the empirical CCDF is defined as:

CCDF (x(i)) =

∑
1≤j≤i

w(j)

N
(2)

Combining the theoretical and empirical CCDFs provides the basis for a linear regression:

ln

 ∑
1≤j≤i

w(j)

 = c1 − α ln(x(i)) + εi (3)

where c1 = ln(N) + α ln(xm). Equation (3) is then estimated by OLS. The estimated Pareto tail
index α is then used to describe household wealth above xm. Vermeulen (2018) goes one step further
and incorporates Gabaix and Ibragimov’s (2011) bias correction into this standard estimator leading
to:

ln

(
(i− 0.5)

N̄i

N̄

)
= c2 − αln(w(i)) + εi (4)

where N̄i = 1
n

∑i
k=1w(k) and N̄ is the average weight. See Vermeulen’s (2018) online appendix for

the detailed derivation and Wildauer and Kapeller (2019) for a simpler alternative and a general
discussion of the appropriate definition of the empirical CCDF.

2.2 A graphical motivation of the rank correction approach

Fitting Pareto distributions to wealth survey data without rich lists can be used to improve estimates
for total wealth or the amount of wealth held in the tail of the distribution (Eckerstorfer et al., 2016;
Vermeulen, 2018). However, while fitting a Pareto distribution to survey data which suffers from
differential unit nonresponse improves the estimate of the tail wealth compared to an estimate
which is purely based on the survey data, the Pareto model still underestimates the actual tail
wealth between 17% and 4% (Vermeulen, 2018, p. 377). The reason for the bad performance of the
OLS estimator of the Pareto model in a situation of differential unit nonresponse is that the log-
linear relationship between the empirical and theoretical CCDF breaks down. The rank correction
and the rich list approach aim to restore that linear relationship with the crucial difference that the
rank correction approach requires much less additional information. We will proceed by illustrating
the rank correction approach by means of a simple example.

Figure 1: Motivating the rank correction approach

Let’s assume we are concerned with a hypothetical tail population of 1 million households (NT1)
which are described by the Pareto distribution with minimum level of wealth of e1 million (xm)
and a shape parameter equal to 1.5 (α = 1.5). In Figure 1 we plot the empirical CCDF based
on equation 2 against the ratio xm

x(i)
representing the theoretical CCDF from equation 1 on a log-

log scale. In grey we have the log linear population relationship between xm
x(i)

and CCDF (x(i))
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where the slope of that line represents the shape parameter α. The black dots represent the same
relationship with the additional assumption that the most affluent 100 households are not observed
and hence are not included in the computation of the empirical CCDF. This illustration shows that
wealth survey data, which does not account for the very top of the wealth distribution gives an
inaccurate representation of the wealth distribution in log-linear terms. In contrast, the purple dots
take the fact that the most affluent 100 observations are not observed into account by correcting the
weights accordingly and, hence, retain the log-linear relationship between xm

x(i)
and CCDF (x(i)). On

a theoretical level, the rich list approach assumes that the researcher has access to a rich list which
adequately represents the richest observations not included in the survey. That means by relying
on rich lists the researcher assumes (part of) the problem away. In contrast, the rank correction
approach (purple) does not require any information about the missing households other than how
many of them are missing.

Figure 2: Rank correction applied to the SCF

The example in Figure 1 is a highly stylized illustration of why differential nonresponse leads
to the breakdown of the log-linear relationship between the theoretical and empirical CCDF. In
contrast, Figure 2 provides an illustration using data from the Survey of Consumer Finances (2016
wave). The SCF’s design is tailored to protect the privacy of its participants and, hence, ex-
plicitly excludes individuals from the Forbes 400 List. Plotting the relationship between xm

x(i)
and

CCDF (x(i)) for the observations representing the richest 250,000 US households based on the origi-
nal SCF data reveals the breakdown of the log-linear relationship due to the exclusion of these richest
400 households. However, after adjusting the weights for the omission of the top 400 household, the
purple dots again conform to a log-linear relationship. Therefore correcting the survey weights by
taking the missing observations at the very top into account, will lead to improved estimates of the
Pareto shape parameter.

In practice surveys might not only suffer from the explicit exclusion of super rich households
from the target population due to privacy concerns but also from more general forms of differential
nonresponse throughout the upper tail of the distribution. The Monte Carlo simulations in section
(3) will address this general problem in greater detail.

2.3 Deriving the rank correction estimator

The rank correction estimator is derived in three steps. First, we incorporate Gabaix and Ibragi-
mov’s (2011) (G&I from here on) argument that it has long been known that OLS estimation of
equation (3) yields a biased estimate of the shape parameter α (e.g. Aigner & Goldberger, 1970).
G&I show that subtracting the value 1/2 from

∑i
j=1w(j) will eliminate this bias. However, G&I also

assume that wi = wj = 1 so that the expression
∑i

j=1w(j) is equivalent to the rank of observation
i as represented by the index number (i) = (1), . . . , (n). Therefore, extending the bias correction
proposed by G&I to complex survey weights corresponds to computing the empirical CCDF in the
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following way:

CCDF (x(i))G&I =

( ∑
1≤j≤i

w(j)

)
− 0.5w(j)

N
(5)

We can reformulate CCDF (x(i))G&I after defining w(0) = 0:

CCDF (x(i))AV =

( ∑
1≤j≤i

w(j)

)
− 0.5w(j)

N
=

2

( ∑
1≤j≤i

w(j)

)
− w(j)

2N
=∑

1≤j≤i
w(j−1) +

∑
1≤j≤i

w(j)

2N

(6)

Wildauer and Kapeller (2019) show that CCDF (x(i))AV is the average between the empirical CCDF
based on a data vector in descending order and the empirical CCDF based on a data vector in
ascending order. This provides a simple interpretation of G&I’s bias correction in the context of
complex survey weights. The interested reader is referred to that paper.

The second step is to account for missing observations at the top of the wealth distribution.
This means the total population represented by the survey N =

∑n
j=1w(j) does not include these

missing observations and therefore each individual weight is scaled down proportionally. For this
purpose we define a vector of adjusted weights w′d = (w′(1), . . . , w

′
(n)) where

w′(i) = w(i)

(
1− u

N

)
(7)

and u represents the correction factor used to account for the number of super wealthy households
which are excluded from the sample due to privacy concerns on the one hand, as well as for more
general forms of differential nonresponse on the other. This adjustment ensures that the number of
households represented by the sample is unchanged.

The third and final step is to use the correction factor u to correct the ranks of the observations
at hand. This is achieved by shifting all ranks up by the according amount. So the rank corrected
empirical CCDF is defined as:

CCDF (x(i))RC =

[∑i−1
j=0w

′
(j) +

∑i
j=1w

′
(j)

]
+ 2u

2N
(8)

Then we can combine equation 8 with the theoretical CCDF (equation 1) and obtain the rank
correction regression equation which can be estimated by OLS:

ln


 i−1∑
j=0

w′(j) +
i∑

j=1

w′(j)

+ 2u

 = c2 − α ln(x(i)) + εi (9)

where c2 = α ln(xm) + ln(2N) and w′(0) = 0.

3 A Simulation Study

The crucial question emerging from this argument is how to choose an appropriate rank correction
factor (u) to adjust the weights before estimating the shape parameter of the Pareto distribution?
In this context, two major aspects are relevant for determining the rank correction factor: first,
the rank correction factor should account for a possible ex ante exclusion of the richest households
(e.g. due to privacy concerns). Secondly, the correction factor should address the problem that
disproportionately many affluent households are missing from the sample due to differential nonre-
sponse problems3. Both problems can be tackled by choosing an adequate correction factor u which
consists of two parts. The first part is the number of super rich households which are excluded due

3In the terminology of Little and Rubin (2019) observations are missing not at random (MNAR).
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to privacy concerns (SR) and the second part is a correction factor due to other forms of differential
nonresponse (DNR) and thus:

u = SR+DNR (10)

The purpose of this section is to show that the correction factor u can be modelled as the sum of
two independent correction factors (SR and DNR) and to demonstrate which characteristics of the
available data should be taken into account when determining these factors. Choosing adequate
correction factors allows for substantial improvements over naive estimations of the shape parameter
which ignore the privacy and the differential nonresponse problems. A rule of thumb for applications
to actual survey data is presented in the next section.

3.1 Rank correction and privacy restrictions on the sample design

Vermeulen (2018) simulates a tail population of 1 million households, roughly in line with French
and German samples in the second wave of the HFCS: There are 1.24 million millionaire households
out of a total sample of 39.7 million housheolds in Germany and 930,000 millionaire households out
of 29 million households in France. We will use NT to denote tail populations and NC to denote
the population of the country as a whole.

Thus for our Monte Carlos simulations we follow Eckerstorfer et al. (2016) and Vermeulen (2018)
and assume a country population of 40 million households (NC = 40 · 106) and a tail population
of 1 million households (NT1 = 106), which follows a Pareto distribution with the scale parameter
xmin = 1, 000, 000 and shape parameter α = 1.5. We simulate net sample sizes ranging from 0.2%�
to 6%� of the tail population which corresponds to a range of net sample sizes from approximately
200 to approximately 6000 observations. The first response mechanism we analyse only incorporates
the exclusion of super rich households due to privacy concerns by setting the response probability
of these households on rich lists to zero4. Thus we define the response mechanism as:

R1(xi) =

{
0.4, for xmin ≤ xi < xSR

0, for xSR ≤ xi ≤ xmax
(11)

where R1(xi) is the response probability of household i depending on its wealth (xi), such that
the general response rate is 40% for all households5, while super-rich households show a response
probability of 0%. Here xSR denotes the level of wealth of the poorest household which is excluded
from the sampling frame because of privacy concerns due to being listed on a rich list. xmax denotes
the wealth of the most affluent household in the population NT1.

Table 1: Size of rich lists relative to underlying survey populations
(1) (2) (3) (4) (5) (6)

country rich list year entries hhds population (hhds) relative size
Austria Trend 2014 100 300* 3.9 million 0.077%�
Germany Manager Magazin 2014 517 1490 39.7 million 0.039%�
Spain El Mundo 2012 118 309 17.4 million 0.020%�
France Challenges 2015 500 1500* 29.0 million 0.052%�
Poland Wprost 2019 100 300* 13.5 million 0.022%�

average 0.042%�
The star indicates that no information on the number of households was available and hhds = 3·entries was
used. Highly exhaustive rich lists relative to their country size, like in the case of Belgium, the Netherlands
or the UK were ignored, in order to obtain conservative estimates.

Table 1 compares the size of rich lists relative to the total population for 5 European countries.
It is important to note that the number of entries on rich lists in column (3) is not equivalent to
the number of households (column 4) on these rich lists. The reason is that the lists published
by journalists often treat entire families as one observation, although these families often comprise

4While it is not true that these super rich households exhibit a zero response probability, if they are excluded from
the sample by design, setting their response rate to zero is an equivalent and convenient way of incorporating such a
mechanism into our simulations. This is in line with SCF practice (Kennickell & Woodburn, 1997, p. 5).

5This is roughly in line with available data. For example Bricker et al. (2016) report response rates for the richest
strata in the SCF between 50% and 12%.
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several households. For example, ownership of Volkswagen and Porsche is spread across several
families in Austria and Germany and similarly the ownership of Aldi, a large German retailer, is
spread across several households. In order to ensure comparability with the HFCS and the SCF,
for which the household is the unit of measurement, we split these families into the number of
households they represent, given the necessary information is available. If this information was not
available, we assumed that each entry represents three households, which is the average number
that prevails for Germany and Spain. Based on the average rich list size of 0.042%� in Table 1, we
will assume that the most affluent 0.04%� of all households are excluded from the sample due to
privacy concerns. With a total population of 40 million that is equivalent to 1600 households (i.e.
SR = 1600) which is roughly the number of households which are on the German rich list from the
Manager Magazin.

Figure 3: Simulation results: rank correction vs baseline

Rank correction estimator based on equation (9) with correction factor
u = SR = 1600 compared to Vermeulen’s (2018) baseline estimator
based on equation (4) for a population of NT1 = 106 following a Pareto
Distribution with xmin = 106 and α = 1.5 and response mechanism
R1(xi), based on means over 200 draws per sample size.

Figure 3 presents simulation results based on 200 draws for each sample size from population
NT1 with the uniform response mechanism R1(xi), which excludes the 1600 most affluent households
due to privacy concerns. We compare the performance of the rank correction estimator α̂RC , based
on equation (9) with correction factor u = SR = 1600 against Vermeulen’s (2018) baseline estimator
α̂baseline, based on equation (4). The key result is that the rank correction estimator outperforms
the baseline estimator substantially and yields estimates of the shape parameter much closer to the
true population parameter value of α = 1.5. Thus, not taking into account the exclusion of super
rich households due to privacy concerns induces a substantial bias in the estimation of the shape
parameter even if no other differential nonresponse problem plagues the data.

3.2 Rank correction and differential nonresponse

To illustrate how the rank correction procedure can provide more reliable estimates of the top tail
of the wealth distribution in the context of general forms of differential nonresponse, we conduct a
Monte Carlo simulation which makes use of Vermeulen’s (2018) response mechanism. This response
mechanism models the response probability as a declining function of household wealth6.

R2(xi) = 0.903− 0.036594 ln(xi) (12)

where R2 is the response probability of household i and xi is that household’s net wealth. This
response mechanism R2(xi) represents a situation where the sampling procedure suffers from dif-
ferential nonresponse but no households are excluded due to privacy concerns as in the previous

6Vermeulen (2018) defines the nonresponse probability (NR) instead of the response probability (R). The formu-
lations are equivalent since NR = 1-R
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section. Separating these two arguments in our analytical exercises enables us to investigate the
two problems under consideration – exclusion of potential observations due to privacy concerns and
general forms of differential nonresponse - separately.

Table 2: Response probabilities for response mechanism R2(xi) = 0.903− 0.036594

Max Mean top 2000 top 4000 top 6000 top 100 top 10
α=1.25 40% 37% 19% 21% 22% 10% 4%
α=1.50 40% 37% 22% 24% 25% 15% 10%
α=1.75 40% 38% 25% 26% 27% 18% 14%

Response probabilities based on response mechanism R2(xi) = 0.903−0.036594 and popula-
tion NT1 = 106 and different α’s. Maximum and mean over entire population. Then response
rates for the most affluent 2000, 4000, 6000, 100 and 10 households in the population.

Vermeulen’s response mechanism produces response probabilities as presented in Table 2 for
populations of 1 million households when assuming different shape parameters for the Pareto dis-
tribution. The main feature of R2 is that since the response probability is a logarithmic function
of a variable exhibiting a Pareto tail, it falls off rather slowly as can be seen by the fact that the
maximum response probability (which corresponds to the poorest household in the population) is
very close to the average across the entire population. However, for a very small number of house-
holds at the very top such as the most affluent 100 or 10 households, response rates are markedly
different. The average response rates of the most affluent households are presented in steps of 2000
households. The pattern is that the 2000 most affluent households, exhibit an average response rate
between 19% and 25%. These differences stem from the fact that different shape parameters also
affect the wealth of super-rich households and thus their response rates. This response mechanism
was estimated by Vermeulen (2018) based on data from Kennickell and Woodburn (1997), who
exploited the fact that the SCF uses high quality tax data to design their sample which allows for a
comparison of ex ante information on wealth with ex post data on response rates. As a consequence,
this mechanism has a solid empirical basis7.

Table 3: Simulation results for the averaged rank correction estimator
(a), α = 1.5 (b), α = 1.25

(c), α = 1.75

Rank correction estimator (α̂RC) in compari-
son with Vermeulen’s (2018) baseline estimator
(α̂baseline) for NT1 = 106, and a Pareto Dis-
tribution with xmin = 106 and three different
shape parameters α = (1.25, 1.50, 1.75), based
on means over 200 draws per sample size. The
Kennickell response mechanism (R2(xi)) is
used. The correction factors are defined as
u = DNR = {2000, 4000, 6000}.

7However, concerns regarding the extent to which this mechanism applies universally across countries and time
remain. This is an important area for further research and depends crucially on central banks’ access to individual
tax data which would enable them to implement high quality oversampling strategies.

9



Table 3 presents simulation results based on 200 draws for each sample size from population
NT1 with the Vermeulen-Kennickell response mechanism (R2(xi)), without excluding any households
due to privacy concerns. Results are reported for three different correction factors u = DNR =
{2000, 4000, 6000}. Panels (a)-(c) of Table 3 confirm that α̂baseline exhibits a substantial bias
and overestimates the shape parameter independent of the sample size or the value of the shape
parameter itself. The novelty is that the rank correction estimator α̂RC exhibits a much smaller
bias across all three levels of the chosen correction factor u, independent of the specific sample size
or the true underlying shape parameter. The rank correction approach with u = 4000 yields results
which are very close to the true population parameter even for different shape parameters.

If the underlying population exhibits an especially thick tail (meaning low shape parameters as
in panel (b) with α = 1.25), a choice of u = 4000 proves to be a conservative choice which yields
an estimate of the shape parameter slightly above the true value. For populations with less thick
tails (i.e. panel (c) with α = 1.75) the rank correction approach based on u = 4000 only slightly
overestimates the tail (i.e. underestimates α). Nevertheless in both cases, the rank correction
approach produces results which exhibit a much smaller bias compared to the baseline estimator
which ignores the nonresponse problem altogether. Furthermore, the simulation exercise confirms
that choosing u = 4000 is indeed a conservative choice as it hardly over-estimates the tail thickness
while improving the baseline estimate in all cases. Choosing u = 2000 represents an extremely
conservative level of correction, which never overestimates the tail thickness.

Based on Table 3 we conclude that the rank correction approach works. It works well across a
plausible set of sample sizes and shape parameters of the Pareto distribution. By choosing adequate
upper and lower bounds for the correction factor u, it is possible to obtain estimates of the shape
parameter which are substantially closer to the true population parameter. The remainder of the
section moves on to analyse the privacy and differential nonresponse problem in combination and
then adds two robustness checks. The first of these addresses the sensitivity of the results to changes
in the tail population size and the second check addresses the sensitivity of the results to changes
in the response mechanism.

3.3 Rank correction: privacy restrictions and differential nonresponse

While the previous two sections investigated the restrictions imposed by privacy concerns and
differential nonresponse in isolation, this section demonstrates that we can choose a correction factor
which addresses both problems jointly and is based on equation (10): u = SR+DNR. For doing so,
we conduct another set of simulations for a population of 1 million households (NT1 = 106) following
a Pareto Distribution with xmin = 106 and three different shape parameters α = {1.25, 1.50, 1.75}.

The response mechanism is a combination of R1(xi) and R2(xi):

R3(xi) =

{
0.903− 0.036594 ln(xi), for xmin ≤ xi < xSR

0, for xSR ≤ xi ≤ xN1

(13)

Instead of the fixed 40% response rate for all households who are not on the rich list (as is
the case with R1(xi)), the new response mechanism R3(xi), models the response rate for these
households as a declining function of wealth in the same way R2(xi) did. Results are presented
in Table 4 for choosing u as u = SR + DNR with SR = 1600 and DNR = {2000, 4000, 6000}
yielding u = {3600, 5600, 7600}.

Table 4 confirms that the problem of exclusion of super rich households due to privacy concerns
and differential unit nonresponse can be tackled by specifying a correction factor which is the sum of
the privacy (SR) and general differential nonresponse (DNR) correction factors. Panel (a) confirms
that for a shape parameter α = 1.5 the rank correction approach based on u = 5600 eliminates the
bias from which baseline OLS regressions are suffering almost completely across all sample sizes.
The conservative lower bound of u = 3600 exhibits a substantially lower bias compared to the
baseline, but overestimates the shape parameter for all sample sizes. A more aggressive correction
factor like u = 7600, slightly underestimates the shape parameter and thus overestimates the tail
thickness. Panels (b) and (c) confirm that the conservative correction factor of u = 3600 always
represents a substantial improvement over the baseline, and even an aggressive correction based
on u = 7600 will only slightly overestimate the tail thickness in the case of relatively high shape
parameters such as 1.75 but performs very well for lower shape parameters.
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Table 4: Simulation results for the averaged rank correction estimator
(a), α = 1.5 (b), α = 1.25

(c), α = 1.75

Rank correction estimator (α̂RC) in compari-
son with Vermeulen’s (2018) baseline estimator
(α̂baseline) for NT1 = 106, and a Pareto Dis-
tribution with xmin = 106 and three different
shape parameters α = {1.25, 1.50, 1.75},
based on means over 200 draws per sample
size and response mechanism (R3(xi)).
The correction factors are defined as
u = DNR+ SR = {3600, 5600, 7600}.

.

3.4 Robustness check: varying the tail population size

After demonstrating that the rank correction approach can be used to address the problem of privacy
restrictions as well as the problem of differential nonresponse jointly, this section investigates to what
extent choosing the correction factor is sensitive to the size of the tail population itself. For this
purpose we conduct simulations for two populations: NT2 = 105 and NT3 = 5 · 104 together with
the response mechanism from the previous section (R3(xi)) which combines the problem of privacy
restrictions and general differential nonresponse.

Results are presented in Figure 4. Based on the results from the previous section the moderate
correction factor u = 5600 was chosen for the baseline specification based on the standard sample
NT1 = 106. For the two smaller samples NT2 = 105 and NT3 = 5 · 104 the correction factor was
scaled proportional to the change in the population size. Thus for N2 we used u = 560 and for N3

we used u = 280.
The important result from Figure 4 is that smaller population sizes require larger samples in order

to achieve a comparable reduction in the bias due to privacy concerns and differential nonresponse,
compared to the baseline Vermeulen (2018) specification. This pattern is not restricted to the rank
correction estimator but is also present in the baseline estimator and the scale of the problem is
more pronounced for small samples. For example the mean over 200 draws for the point estimate
of the shape parameter (α) is 1.64 for the baseline estimator applied to samples of size 0.2%� and
based on a population of NT1 = 106. Using the same sample size but reducing the population
sizes to N = 105 and N = 5 · 105 yields baseline estimates of 1.72 and 1.81 respectively. The rank
correction procedure improves upon these baseline results by producing alpha estimates of 1.53, 1.66
and 1.76 respectively. These differences are highly persistent as sample sizes increase. However for
the largest samples of around 6%� these population-size induced differences disappear for practical
purposes: the averaged baseline estimates we obtain are 1.65, 1.64 and 1.64 for the three population
sizes of 106, 105 and 5 · 104. The rank correction procedure improves upon these baseline results by
producing shape parameter estimates of 1.51, 1.52 and 1.53, respectively (rounded to two comma
digits).

The implication of these results is twofold: First, scaling the correction factor proportional to
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Figure 4: Simulation results for different population sizes

Population sizes of NT1 = 106, NT2 = 105 and NT3 = 5 · 104 are used
together with accordingly scaled correction factors: u = 5600, u = 560
and u = 280.

the population size is a good strategy to adapt the rank correction approach for different population
sizes. Second, estimates based on small populations suffer from substantially larger biases, especially
for smaller samples. This second result calls for an additional adjustment when dealing with small
samples from small populations. However in the case of the ECB’s HFCS there is a strong tendency
that smaller countries rely on much larger samples relative to the population compared to larger
countries which partially compensates for this problem. For example, the smallest countries in the
second wave of the HFCS are Malta and Luxembourg with net sample sizes of 6.2%� and 7.6%� .

3.5 Robustness check: varying the response mechanism

The last robustness check is to assess the sensitivity of the required correction factor (u) to changes
in the response mechanisms. The sensitivity is assessed by running simulations with two alternative
response mechanisms. The first alternative, RA1(xi), represents a downward shift of the intercept
compared to the baseline mechanism R3(xi). The second alternative, RA2(xi), represents a decrease
in the slope parameter compared to the baseline mechanism R3(xi):

RA1(xi) =

{
0.85− 0.036594 · ln(xi), for xmin ≤ xi < xtopX

0, for xtopX ≤ xi ≤ xN
(14)

RA2(xi) =

{
0.903− 0.042 · ln(xi), for xmin ≤ xi < xtopX

0, for xtopX ≤ xi ≤ xN
(15)

Table 5 outlines the differences between these two alternative response mechanisms and the
Vermeulen-Kennickell mechanism (R3(xi)) used so far. The first mechanism represents a downward
intercept shift which means that the response probability of each household is uniformly decreased
by about 5%. The second mechanism reduces the average response rate by about 8 percentage
points.

Table 5: Response probabilities for alternative response mechanisms
Max Mean top 1600 1600th to 3600th richest household

R3(xi) 40% 37% 0% 25%
RA1(xi) 34% 32% 0% 20%
RA2(xi) 32% 29% 0% 16%

Response probabilities based on different response mechanisms and population NT1 =
106 and α = 1.5. Maximum and mean over entire population. Then average response
rate for the most affluent 1600 households. Then average response rates for 2000 next
richest observations.
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Figure 4 presents estimation results based on the three different response mechanisms. Compared
to the baseline both alternative mechanisms increase the bias the estimates of the shape parameter
exhibit both in the case of the standard estimator and after applying a rank correction estimator
with the moderate correction factor u = 5600. Decreasing the slope parameter increases the bias
more than the intercept shift in the response mechanism. This is due to the fact that decreasing the
slope parameter widens the gap in response rates between affluent and less affluent households and
thus contributes to an underestimation of the tail thickness (overestimation of the shape parameter).
Nevertheless, the rank correction procedure provides results which are substantially closer to the true
underlying population parameter compared to the standard approach which ignores the differential
nonresponse problem.

Figure 5: Simulation results for different response mechanisms

Results based on the rank correction estimator with u = 5600 and Vermeulen’s (2018) baseline estimator.

4 A Rule of Thumb for Real Data Applications

The key challenge in applied work is to choose an adequate value for the correction factor u. The
first component of u depends directly on the number of households which are excluded from the
target population (SR) because of privacy concerns. In some cases, as in the case of the Survey of
Consumer Finances (SCF), the amount of excluded households is openly communicated. In other
cases the number of entries on publicly available rich lists can provide guidance. In general we
propose to choose SR as 0.004% of the underlying population of the country (NC). The second
component of u is the correction factor for addressing general problems of differential nonresponse
throughout the sample (DNR). Based on the above simulation results we conclude that there are
three factors which need to be taken into account when determining DNR:

First, DNR is proportional to the size of the tail population (NT ) as can be seen in Figure
4. That means when starting out from a moderate correction factor like DNR = 4000 which was
established for a tail population size of 106 households, this factor needs to be scaled accordingly for
different tail populations. Second, even if an oversampling strategy is part of the sampling process,
not all oversampling strategies are equal in terms of quality and efficacy. Oversampling regions or
entire states which are known to be more wealthy will be much less useful in oversampling the tail of
the wealth distribution compared to oversampling schemes which rely on high quality administrative
data such as tax forms8. The simulations were conducted under the assumption that no oversampling
takes place and thus if oversampling does take place, the moderate correction factor DNR = 4000
as the point of departure has to be adjusted accordingly. Third, choosing DNR is insensitive to the

8In the second wave of the HFCS oversampling rates of millionaires are 506% in Spain, 409% in Slovakia and
329% in France. All three countries use tax data in some form. The corresponding rates are 173% for Germany, 72%
for Belgium and 58% for Poland (regional income information). The picture is more dire for countries without any
oversampling strategy like Italy (9%).
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sample size, especially for large tail populations around 106 households (see Tables 3 and 4). Only for
very small tail population sizes, the sample size starts to play a role. Hence, when considering small
populations researchers should take the sample size into account and potentially adjust the chosen
correction factor. In addition, the simulations have shown that DNR is relatively insensitive to
different values of the population shape parameter of the Pareto distribution (see Tables 3 and 4). By
relatively insensitive we mean that the rank correction approach always outperformed the baseline
specification in our simulations and thus provides estimates which are closer to the population
parameter. Lastly, the rank correction approach is relatively insensitive to changes in the response
mechanism. In Figure 5 we can see that the rank correction approach consistently outperforms the
baseline approach which just ignores the differential nonresponse problem at hand.

Based on these factors we propose a rule of thumb for setting DNR. The point of departure is
DNR = 4000 which is then adjusted based on the three factors which proved to have an important
impact on the results of the Monte Carlo simulations: The population size (aP ), the sample size
(aS) if populations are small and the oversampling strategy in place (aO).

DNR = 4000 · aP · aS · aO (16)

The population adjustment factor takes the size of the tail population relative to a tail population
of NT1 = 106 into account. Setting aP = 1 would refer to a tail population of 106 and aP = 0.6
to a tail population of 6 · 105 and so on. The sample adjustment factor takes into account the
larger differential nonresponse bias for small samples from small populations. We will discuss how
to choose aS in the next section. The oversampling adjustment factor takes into account whether
an oversampling strategy was applied and if so, the quality of that scheme. For cases with no
oversampling a0 should be set to 1. For increasingly successful oversampling strategies a0 should
be adjusted downwards towards 0.

Overall our rule of thumb allows the researcher to derive a correction factor which systematically
takes the characteristics of the survey at hand into account. While we demonstrated that the
rank correction procedure is an improvement over simply ignoring the likely problem of differential
nonresponse, we are aware that this approach cannot fully resolve the fundamental problem of
taking an unknown response mechanism into account. Nevertheless, in the next section we will
demonstrate the usefulness of this rule of thumb by applying it to actual household survey data.

5 Application to Wealth Survey Data

In this section the rank correction approach is applied to the second wave of the Household Finance
and Consumption Survey (HFCS), the 2013 wave of the Survey of Consumer Finanes (SCF) and
the fourth wave (2012-2014) of the UK’s Wealth and Asset Survey (WAS). We use the aggregate
netwealth measures from the HFCS (variable DN3001) and the SCF (variable networth; SCF sum-
mary dataset). The WAS exhibits an important difference compared to the HFCS and the SCF in
that it also includes model based estimates of pension wealth. That means it estimates the current
value of future pension claims. To make our wealth measure comparable across surveys, we exclude
pension wealth in the WAS9.

5.1 Choosing the correction factor (u) in practice

Applying the rank correction approach outlined above to actual wealth survey data, requires the re-
searcher to determine the correction factor u. First, let’s begin with the problem of privacy concerns.
We argued that SR should be chosen either proportional to the population under investigation (i.e.
setting SR = 0.004% · NC) or with reference to the number of entries in publicly available rich
lists. Table 6 presents values for SR based on both approaches contingent on whether rich lists are
available (columns 2 to 4). Column (5) reports the value we implement in the subsequent analysis.

The decision whether SR is determined proportional to the population or based on rich list
information is based on two principles. First if we have reliable information on the number of

9Thus we define netwealth = TotWlthW4 − TOTPENw4_aggr. The amount of wealth the WAS adds in form
of claims on future pensions is substantial. For example the number of millionaires in wave 4 based on TotWlthW4
amounts to 2.75 million while there are 887,209 millionaires based on the netwealth variable which excludes pension
wealth.
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Table 6: Determining SR
(1) (2) (3) (4) (5)

country 0.004% ·NC richlist entries households SR

Austria 155 Trend 100 300* 155
Belgium 192 De Rijkste Belgen 637 1,911* 1,911
Germany 1,587 Manager Magazin 517 1,490 1,490
Spain 697 El Mundo 118 309 309
Finland 105 105
France 1,161 Challenges 500 1,500* 1,161
Greece 171 171
Italy 988 988

Netherlands 304 Quote 500 500 1,500* 1,500
Portugal 161 161
Poland 540 Wprost 100 300* 300
US2013 4,901 Forbes 400 400 1,200* 400

UK2012−2014 1,024 Sunday Times 1,000 3,000* 3,000
The star in column (4) indicates no information on the number of households was available
and hhds = 3 · entries was used.

households on rich lists, this information is used (Germany, Spain), otherwise we use the proportional
measure except for Belgium, Netherlands, the UK and Poland. For the first three countries an
unusually exhaustive rich list relative to the size of the country is available. In this context the
proportional values seem to understate the extent of privacy concerns. In the case of Poland the
proportional result (540) is almost twice as large as the estimated number of households (300) on
the rich list and thus we choose the more conservative correction factor of 300. Finally for the US
we only choose a correction factor of 400 because of the exceptionally high quality oversampling
strategy in place and the explicitly communicated exclusion of the Forbes 400.

For determining DNR our proposed rule of thumb was DNR = 4000 · aP · aS · aO where aP ,
aS and aO are population, sample and oversampling adjustment factors. Columns (1) to (3) of
Table 7 present three important characteristics of the country datasets in order to determine these
adjustment factors: the number of observations (Obs.) with net wealth above the threshold of e1
million ($ 15 million in the case of the US), the number of households these observations represent
(i.e. the tail population NT ) and the sample size (s) in per mille with respect to this tail population
(i.e. s = Obs/NT · 1000). Then, the population adjustment factor aP is defined as the ratio of the
country specific tail population (NT ) to the reference tail population of 1 million households used
in the Monte Carlo simulations in section 5:

aP = NT /106 (17)

For three countries we deviate from this rule because we have strong concerns about how reliably
these surveys are measuring the size of the tail (i.e. households with net wealth in excess of e1
million). These three countries are Greece, the Netherlands and Poland. Our suspicion stems from
the fact that these three samples only contain a handful of millionaire observations as can be seen in
column (1) of Table 7. Therefore we match these three countries with similar countries and assign
similar tail sizes. For example we pair Greece with Spain and define the Greek tail size to be 50%
of the Spanish tail, relative to the country size:

aP,GR =
NC,GR

NC,ES
· aP,ES · 0.5 (18)

The 50% adjustment is a precautionary measure. In equivalent manner we define, the Dutch tail
proportional to the German tail:

aP,NL =
NC,NL

NC,DE
· aP,DE (19)

as well as the Polish tail proportional to the German tail (due to a lack of a better matching
country), with a 33% precautionary adjustment:

aP,PL =
NC,PL

NC,DE
· aP,DE · 0.33 (20)
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The sample adjustment factor aS is supposed to take into account the increasing severity of the
differential nonresponse bias when estimating the Pareto tail index based on small samples for small
populations (see Figure 4). In order to determine aS for the countries listed in Table 7, we used
a stepwise search procedure to find the optimal correction factor uopt in the simulations based on
smaller tail populations NT2 = 105 and NT3 = 5 · 104. This search procdure is outlined in the
Appendix. We then determined the relationship between the sample size (s, in per mille) and the
optimal correction factors with two regressions of the form:

uopt/ubase = β0 + β1 ln(s) + ε (21)

where ubase = 560 was used in the regression for the case of a tail population of NT2 = 105 and
ubase = 280 for the case of a tail population of NT3 = 5 · 104. These are the standard correction
factors scaled proportional to the population size (i.e. instead of u = 5600 for NT1 = 106, u = 560

for NT2 = 105). We then used the fitted values from these two regressions ( ˆuopt
ubase

), as proxies for aS ,
for countries with tail population sizes close to 105 and 5 · 104. The details and regression results
are outlined in the Appendix. For example in the case of Austria we have a tail population of
NT = 129, 309 households and a sample size of s = 0.67%�. Based on regression (21) we obtain a
fitted value and thus correction factor of 1.7 for a population of 100,000 and a sample of s = 0.7%�
and thus we set aS = 1.7. We chose an adjustment factor of 1 for those countries which either
exhibit a large tail population close to or over 1 million households (i.e. Germany, Spain, France,
Italy, USA) or which exhibit sample sizes in excess of 6%�(i.e. Finland).

Table 7: Choosing DNR for HFCS and SCF data
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Obs. NT s aP aS aO DNR SR u

Austria 86 129,304 0.665 0.13 1.7 0.8 703 155 858
Belgium 209 258,007 0.811 0.26 1.3 0.7 939 1911 2,850
Germany 379 1,243,129 0.305 1.24 1 0.6 2,984 1,490 4,474
Spain 1,272 600,989 2.117 0.6 1 0.1 240 309 549
Finland 445 53,655 8.294 0.05 1 0.1 21 105 126
France 1,638 930,511 1.76 0.93 1 0.05 186 1,161 1,347
Greece 12 14,280 0.871 0.07 7.5 0.9 1,986 171 2,157
Italy 255 717,846 0.355 0.72 1 1 2,871 988 3,859

Netherlands 31 101,740 0.305 0.24 2 1 1,903 1500 3,403
Portugal 209 78,195 2.723 0.08 1.2 0.7 263 161 424
Poland 19 45,625 0.412 0.14 3.5 0.9 1,776 300 2,076
USA2013 502 482,202 1.041 0.50 1 0.01 19 400 419

UK2012−2014 1,190 887,209 1.341 0.9 1 1 3,549 3,000 6,549
NT is defined as the tail population of households above e1 million in the HFCS, above £1 million
in the WAS and above $15 million in the SCF.

The adjustment factor aO is supposed to take into account the varying degrees to which dif-
ferent countries implement oversampling strategies and the quality of exogenous data on which
these oversampling strategies are based. For countries which do not implement any oversampling
strategy an adjustment factor of 1 should be chosen (Italy and Netherlands). For those countries
which implement oversampling strategies, the adjustment factor should be adjusted towards 0 with
increasing quality of the oversampling strategy. As a consequence, countries that rely on precise
individual tax data for oversampling purposes (US, France, Spain, Finland) were given adjustment
factors very close to 0. The next category of countries are those which use regional income data
(Germany, Belgium, Greece, Poland) or dwelling floor space (Portugal, Poland) and the fourth
group are countries which only use geographic information to oversample (Austria). When it comes
to judging the quality of the oversampling strategies applied and the severity of the remaining differ-
ential nonresponse bias, the number of tail observations in column (1) provides crucial information.
From there it becomes clear that despite the fact that Greece or Poland use regional income and real
estate price information for their oversampling design, the small number of observations above the
e1 million threshold, indicates the poor performance of these oversampling strategies. Accordingly
these two countries have a much higher adjustment factor of 0.9 compared to other countries relying
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on similar information for their oversampling strategies. For the UK we chose an adjustment factor
of 1 because the oversampling strategy is focussed solely on the top decile and based on a single
stratum. Since the Pareto tail we are fitting falls entirely into this one stratum, within this stratum
there is no oversampling.

Combining the three adjustment factors (columns 4 to 6) yields DNR, reported in column
(7) which together with the previously discussed values for SR yield the final correction factor u,
reported in column (9). It is these values for u which haven been used to produce the results which
are presented in the next section.

5.2 Estimation results

Table 8 presents the results after implementing the rank correction procedure based on the correction
factor (u) as defined in the previous section. Column (1) reports the Pareto tail index which is
obtained from fitting a Pareto distribution to the survey data above the threshold (e1 million and
£1 million for the HFCS and WAS data respectively, and $15 million for the US data) based on
Vermeulen’s (2018) baseline estimator α̂baseline (equation 4). Column (2) reports the results from
the rank correction estimator α̂RC (equation 9), relying on the correction factors reported in column
(3).

Table 8 contains two important results: First, the Pareto tail parameter based on the rank
correction approach is smaller than the baseline result for all countries. This result is strongly in
line with our Monte Carlo simulations. Secondly, there are substantial differences across countries
with respect to how much the rank correction approach impacts the estimated Pareto alpha. This
second result is also expected as the country specific correction factors take differences in size and the
likely quality of the implemented oversampling strategy into account. We see the most pronounced
corrections and the highest values for the tail parameter for those countries where we deemed the
oversampling scheme to be of the lowest quality (and which come with the smallest number of
observations in the tail). For example for Greece the estimated tail index declines from 3.62 to 1.92
and for the Netherlands from 4.5 to 3.58.

Table 8: Baseline and rank correction shape parameter (α) estimates
(1) (2) (3)

α with u=0 α with u u

Austria 1.426 1.331 858
Belgium 2.198 1.901 2,850
Germany 1.588 1.470 4,474
Spain 1.756 1.609 549
Finland 2.085 1.900 126
France 1.631 1.567 1,347
Greece 3.626 1.923 2,157
Italy 2.416 2.156 3,859

Netherlands 4.497 3.577 3,403
Portugal 2.157 1.901 424
Poland 2.347 1.780 2,076
US2013 1.830 1.650 419

UK2012−2014 1.973 1.772 6,549
Comparing baseline and rank correction shape parameter
(α) estimates for HFCS, SCF and WAS data.

The estimated alpha coefficient provides a first intuition on how the rank corrected fit of the
Pareto tail will impact on the overall picture of household wealth. Table 9 provides a detailed
comparison between the total amount of household wealth measured by the original survey data
(column 1) and after applying the rank correction approach and replacing all households above the
threshold with the estimated Pareto tail10. Column (3) presents the ratio of the corrected data
over the original survey data. Comparing Tables 8 and 9 reveals that there is a clear pattern that
countries with the smallest tail indices also exhibit the strongest corrections. This is expected since

10We are following Vermeulen (2018) for ease of comparability.
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smaller alphas represent thicker tails. The important caveat is that despite the fact that countries
with weak or non-existing oversampling strategies (Netherlands, Poland, Italy, Greece) exhibited
a substantial correction of their estimated tail indices in Table 8, due to the still relatively thin
tail, the corrections of aggregate wealth are moderate. The likely reason for this outcome is that
fitting a Pareto tail relies on the fact that some information about the tail is captured by the survey.
In situations with very limited information about the tail, fitting the Pareto distribution becomes
increasingly difficult. Overall the recorded corrections are moderate for most countries, between 2%
(Poland, Italy, Finland) and almost 7% (Germany) with the exception of Austria (16%) and the
Netherlands (0.4%).

Table 9: Aggregate household net wealth
(1) (2) (3)

original rank correction (RC) RC/original
Austria 998 1,162 1.164
Belgium 1,584 1,644 1.037
Germany 8,500 9,073 1.067
Spain 4,768 5,016 1.052
Finland 512 526 1.027
France 7,033 7,439 1.058
Greece 445 465 1.046
Italy 5,590 5,721 1.023

Netherlands 1,147 1,151 1.004
Portugal 627 659 1.051
Poland 1,301 1,324 1.018
US2013 66,762 69,150 1.036

UK2012−2014 6,599 6,847 1.038
Aggregate household net wealth based on original survey data and rank
corrected data in billion Euro. For the US and UK in billion USD and
billion GBP, respectively.

Table 10 provides a clearer picture about the impact the rank correction approach has on different
measures of wealth concentration and wealth inequality. A striking but expected result is that
the top 0.1% and top 1% wealth shares increase substantially when applying the rank correction
approach, even in countries where the correction of aggregate wealth is modest. The reason for this
phenomenon lies in the fact that the thresholds of e1 million, £1 million and $15 million is between
the top 1% and top 10% cut-off in most countries.

Table 10: Household net wealth shares
(1) (2) (3) (4) (5) (6)

original RC original RC original RC
top 0.1% top 0.1% top 1% top 1% top 10% top 10%

Austria 10.9 19.4 25.4 34.2 55.5 61.4
Belgium 1.3 4.4 12. 13.9 42.5 43.5
Germany 6.3 14. 23.6 29.6 59.8 62.3
Spain 6.4 8.2 16.3 19.8 45.6 48.3
Finland 4. 5.1 13.3 15.3 45.2 46.7
France 7.3 9.8 18.7 22.6 50.8 53.4
Greece 1.5 4.9 9.2 12.7 42.5 44.9
Italy 2.6 3.8 11.7 13.2 42.9 44.1

Netherlands 0.7 1.9 9.8 10. 43.6 43.6
Portugal 4.1 6.1 14.4 18.2 52.1 54.4
Poland 1.9 4.7 11.7 13.3 41.8 42.9
USA2013 13.1 15.4 35.4 37.6 75.0 75.9

UK2012−2014 5.6 6.3 15.1 17.3 45.7 47.6
Household net wealth shares based on original survey data and rank corrected data expressed
in % of total household wealth.
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5.3 Reconciliation with other data sources

Another crucial question is, how well the results based on the rank correction approach align with
other existing information on the distribution of wealth. This section compares the results provided
by the rank correction approach with other, unrelated sources of information on the distribution
and extent of private household net wealth. The two crucial sources of exogenous information
against which we compare our results are first, the World Inequality Database (WID) and second,
journalists’ rich lists for individual countries.

The methods used to construct the WID series for the US are discussed in Piketty et al. (2016)
and the accompanying data appendix (Tables II-E1 to E13 contain the wealth share estimates). The
country specific details for applying this methodology to France are discussed in Garbinti, Goupille-
Lebret, and Piketty (2016) and in the accompanying appendices. The methods used for the UK
series are discussed in Alvaredo, Atkinson, and Morelli (2018), its working paper version and the
online appendix. The most important difference between the WID concentration measures and the
survey based concentration measures is that the former are based on net personal wealth, which
means that the unit of analysis is the individual instead of the household. One of the first steps of
the WID methodology is to split married couples in survey or tax data into two observations with
equal net wealth shares. This means some differences in the results stem from these methodological
differences.

Table 11: Top wealth shares: WID vs rank correction
country data and method (1) (2) (3)

top 0.1% top 1% top 10%

(1) France World Inequality Database 8.2 23.4 55.3
(2) France rank correction estimator 9.8 22.6 53.4
(3) France uncorrected survey data (HFCS) 7.3 18.7 50.8
(4) USA World Inequality Database 20.3 37.0 73.2
(5) USA rank correction estimator 15.4 37.6 75.9
(6) USA uncorrected survey data (SCF) 13.1 35.4 75.0
(7) UK World Inequality Database 19.9 51.9
(8) UK rank correction estimator 6.3 17.3 47.6
(9) UK uncorrected survey data (WAS) 5.6 15.1 45.7

Source: Authors’ computations based on data from the Household Finance and Consumption Survey
(HFCS), Survey of Consumer Finances (SCF), Wealth and Asset Survey (WAS) and the World
Inequality Database (WID). Comparison of French, US and UK wealth shares for the years 2014
and 2013 and 2012-2014 respectively.

Against that background, Table 11 compares wealth concentration ratios from the WID (rows
1, 4 and 7) with the results from the rank correction approach (rows 2, 5 and 8) and raw survey
based measures (rows 3, 6 and 9). The rank correction results for France, the US and the UK
clearly represent an improvement over the raw survey data and are closer to the WID measures
than the raw counterparts. In the case of France the RC measures are below the WID values except
for the top 0.1% share and thus can be regarded as moderate concentration measures against the
WID background which represents the most precise effort in the literature to produce concentration
measures based on a combination of tax, survey and national accounts data. For the US case,
the rank correction based top shares are slightly higher than the WID results except for the top
0.1%. For the UK, the WID does not provide an entry for the top 0.1% share in 2012. Overall the
RC based measures help close the gap between the WID and the raw survey measures which we
interpret as support for the rank correction approach.

Another exogenously available source of information about the top tail of the wealth distribution
are journalists’ rich lists. Table 12 column (1) lists the number of billionaires in the population
according to the raw survey data (i.e. billionaire observations times their weight) which indicates
that no country except the US with the SCF has an oversampling strategy in place which is suitable
to capture billionaires11. Column (3) reports the number of billionaire entries on publicly available
rich lists and since these entries often comprise large families, column (4) reports an estimate trying
to disentangle these families into individual households. In Germany this leads to a substantial fall

11Another factor is the larger size of the US.
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Table 12: Number of billionaire households
(1) (2) (3) (4) (5)

country survey rich list bn. entries bn. households RC data
Austria 0 Trend 33 35 18
Belgium 0 Forbes 3 0
Germany 0 Manager Magazin 134 77 49
Spain 0 El Mundo 27 11 9
Finland 0 Forbes 4 0
France 0 Challenges 72 74 19
Greece 0 Forbes 3 0
Italy 0 Forbes 41 0

Netherlands 0 Forbes 8 0
Portugal 0 Forbes 3 0
Poland 0 Forbes 5 0
USA 43 Forbes 491 474
UK 0 Sunday Times 40 4

Note that Forbes does not refer to the Forbes 400 list but to the Forbes list of billionaires worldwide.

in the number of billionaire households from 134 to 77 because a series of billionaire families are
divided into less than billionaire households. Finally, column (5) reports the number of billionaires
according to the estimated Pareto tail after applying the rank correction procedure. It can be seen
that for many of the smaller countries, no billionaires are expected. At the same time for those
countries where billionaire lists are available the rank correction procedure substantially improves
upon the raw data numbers and in general yields plausible results which are close to the number
of billionaire households found on rich lists. In all cases the rank correction approach produces
fewer billionaires than are reported on rich lists. We interpret this result as general support for the
claim that the rank correction approach is a rather conservative tool for addressing the nonresponse
bias in survey data as the results it provides probably still underestimate the actual degree of
concentration. The probable underestimation of the rank correction approach becomes apparent for
countries like Italy, the Netherlands and the UK, all three of which do not have an oversampling
strategy in place12.

6 Summary and Conclusion

Against the background that for many countries household surveys are the only available source
of data on the distribution of wealth, this paper presents a new approach for tackling the problem
that surveys tend to underestimate household wealth due to differential nonresponse. The core idea
of this rank correction procedure is to fit a Pareto distribution to the tail of the data, by means of
a log-rank-log-wealth regression (Kratz & Resnick, 1996), after adjusting the accumulated survey
weights (i.e. the rank) first, for the number of super rich households which are not included in
the sample design due to their appearance on rich lists and resulting privacy concerns (SR) and
second, for the under-representation of rich households at the top due to general forms of differential
nonresponse (DNR). This procedure yields an overall correction factor u = SR+DNR.

For determining the two components (SR, DNR) of the correction factor u, we propose two
rules of thumb. The first heuristic is for determining the number of households excluded at the
top due to privacy concerns. If explicit information about the exclusion of super rich households is
available from the data provider (as is the case with the Survey of Consumer Finances) that should
be used. Alternatively we propose to choose SR proportional to the total population based on
the average size of publicly available rich lists across Austria, Germany, Spain, France and Poland:
SR = 0.004% ·NC .

The second heuristic is concerned with the determination of DNR and we propose to start from
a correction factor of 4000, which is optimal for a tail population size of 1 million households and

12The WAS for the UK only oversamples the top decile of the wealth distribution and thus for the purpose of fitting
a tail which starts within the top decile, there is no oversampling.
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the Vermeulen-Kennickell response mechanism (Vermeulen, 2018). This correction factor can then
be tailored to the characteristics of the data set at hand by applying three adjustment factors:
DNR = 4000 · aP · aS · aO. The adjustment factor aP takes the size of the tail population into
account (relative to the 1 million baseline), aS scales the correction factor to account for small
sample sizes from small tail populations and aO is an adjustment factor which takes the quality and
degree of oversampling at the top into account.

By means of Monte Carlo simulations, we show that choosing an appropriate correction factor
yields a substantial reduction in the bias of the estimated shape parameter of the Pareto distribution
(α) in a situation of differential nonresponse. Applying the rank correction procedure to data from
the SCF and the HFCS results in significant corrections of top wealth shares. Our results are
closer in line with other existing top wealth share estimates than are the raw survey estimates. For
example the WID provides top 1% wealth shares for the US, France and the UK (37%, 23.4% and
19.9%) which compare very well with the rank correction approach (37.6%, 22.6% and 17.3%) and
represent a clear improvement over raw survey estimates (35.4%, 18.7% and 15.1%).

The key advantage of the rank correction procedure over similar existing methods such as
Vermeulen’s (2018) rich list approach, is that it requires much less exogenous information. Es-
pecially in situations where rich list data is not available or of poor quality, the rank correction
approach is a substantial improvement over standard OLS fitted Pareto tails. The rank correction
approach enables the researcher to take differential nonresponse problems into account even if rich
list data is not available. In addition, the rank correction approach forces the researcher to be ex-
plicit and transparent about the required modelling assumptions. In contrast the rich list approach
assumes that rich lists are measured correctly and thus implicitly incorporates all assumptions and
judgements made by the journalists compiling these rich lists and the problems which come with
it (Capehart, 2014; Kopczuk, 2015). In this sense the rank correction approach can serve as an
alternative and robustness check to the rich list approach.

Lastly, we want to reiterate that the rank correction approach, at its core, is a heuristic. Never-
theless, we do think it is an important improvement over simply ignoring differential nonresponse
problems. That said, it is of the utmost importance to address the root cause of the problem and
improve oversampling strategies in existing wealth surveys. From a European perspective, the in-
troduction of the HFCS was a massive step forward. The next step would be to streamline the
oversampling strategies in the HFCS across countries and base them on individual tax data. Grant-
ing access to tax information is a sensitive issue but the success of the SCF demonstrates that it
is by all means feasible. In the meantime researchers have to rely on heuristics and are forced to
make difficult judgements about how to deal with this problem. While this situation is not ideal,
we think that simply ignoring the problem actually makes matters worse and amplifies the under-
lying problem. The alternative presented in this paper might not be as elegant or beautiful as we
would like it to be but at the end of the day it is presumably better to be approximately right than
precisely wrong.
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Appendix: Choosing the sample adjustment (aS) factor

Optimal correction factor search procedure

In order to find optimal correction factors uopt for different population sizes (NT2 and NT3), we
adopt the following search procedure: The first step is to estimate a regression based on equation
(9) with a correction factor u1 = 560 for NT2 (u2 = 280 for NT3) and calculate the deviation of
the obtained estimate from the population value: d1 = α̂1 − 1.5. If this deviation is positive we
continue with the second step which is to increase the correction factor by by 50 u2 = u1 + 50 and
re-estimate equation (9) with this new correction factor. Based on the resulting estimate of the
shape parameter we can calculate d2 = α̂2 − 1.5. We continue these steps until the difference turns
negative. This search algorithm is applied to all 200 samples for each sample size. The optimal
correction factor for a given sample size is the average across the 200 samples. The table below
contains the results for both tail populations:

Table 13: Optimal correction factors
NT2 = 105 NT3 = 5 · 104

netsample (in %�) uopt α uopt α

0.2 2260 1.502 2060 1.504
0.3 1310 1.500 1720 1.504
0.4 1210 1.503 940 1.503
0.5 1010 1.501 900 1.505
0.6 910 1.503 840 1.502
0.7 760 1.505 780 1.504
0.8 960 1.504 860 1.503
0.9 1310 1.505 780 1.504
1.0 960 1.501 540 1.502
1.1 910 1.500 600 1.503
1.2 910 1.503 540 1.504
1.3 860 1.502 640 1.502
1.4 860 1.500 520 1.501
1.5 710 1.504 500 1.504
1.6 760 1.501 420 1.502
3.0 760 1.500 460 1.502
6.0 660 1.501 360 1.502

Source: Authors’ calculations.

Sample adjustment factor (aS) regressions

We regressed the vector of net sample sizes s=(0.4 %�, ... , 1.6 %�) on the ratio of the optimal
correction factors from Table (13) to the standard correction factors scaled according to the size of
the tail population (i.e. u = 560 and u = 260):

uopt/560 = β0 + β1 ln(s) + ε

uopt/280 = β0 + β1 ln(s) + ε

The values 560 and 280 represent the standard correction factor u = 5600, scaled to tail population
sizes of NT2 = 105 and NT3 = 5 · 104. The standard correction factor u = 5600 was chosen for
NT1 = 106 and thus these two alternative tail populations represent 10% and 5% of NT1 and the
correction factors 560 and 280 are rescaled in the same proportion.

The regression results are reported in the table below. We excluded extremely small samples
(0.2%� and 0.3%�) as well as very large samples (3%� and 6%�) to increase the stability of the
regression. The fitted values from these regressions can be interpreted as the sample size adjustment
factor (aS).
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Table 14: Sample adjustment factor regressions
Estimate Standard Error t-Statistic P-Value

Regresion 1 for NT2: uopt/560 = β0 + β1 ln(s) + ε

β0 -1.08098 1.23219 -0.877283 0.40
β1 -0.389043 0.17419 -2.23345 0.047

Regresion 2 for NT3: uopt/280 = β0 + β1 ln(s) + ε

β0 -6.91819 1.168 -5.9231 0.00
β1 -1.32464 0.165145 -8.02112 0.00

Source: Authors’ calculations. The regression excludes the smallest
samples of 0.2%�and 0.3%�and the two largest samples of 3%�and 6%�.

Table 15 reports fitted values for our core range of net sample sizes. These fitted values can
be used as sample adjustment factors (aS) for tail populations of similar sizes. For example in
the case of Austria we have a tail population of NT = 129, 309 households and a sample size of
s = 0.67%�. Based on the above regression, we obtain a fitted value and thus correction factor of
1.7 for a population of 100,000 and a sample of s = 0.7%� and thus we set aS = 1.7.

Table 15: Sample adjustment factors (aS)
netsample size %� for NT2 for NT3

0.4 %� 2.0 3.4
0.5 %� 1.9 3.2
0.6 %� 1.8 2.9
0.7 %� 1.7 2.7
0.8 %� 1.7 2.5
0.9 %� 1.6 2.4
1.0 %� 1.6 2.2
1.1 %� 1.6 2.1
1.2 %� 1.5 2.0
1.3 %� 1.5 1.9
1.4 %� 1.5 1.8
1.5 %� 1.4 1.7
1.6 %� 1.4 1.6

Source: Authors’ calculations.
NT2 = 105 and NT3 = 5 · 104.
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