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Abstract 

The economic impact of public health measures to contain the COVID-19 novel coronavirus is a matter of 

contentious debate. Given the high uncertainties, there is a need for combined epidemiological-

macroeconomic scenarios. We present a model in this paper for developing such scenarios. The 

epidemiological sub-model is a discrete-time matrix implementation of an SEIR model. This approach 

avoids known problems with the more usual set of continuous-time differential equations. The post-

Keynesian macroeconomic sub-model is a stylized representation of the United States economy with three 

sectors: core, social (most impacted by social distancing), and hospital, which may experience excessive 

demand. Simulations with the model show the clear superiority of a rigorous testing and contact tracing 

regime in which infected individuals, symptomatic or not, are isolated. Social distancing leads to an abrupt 

and deep recession. With expanded unemployment benefits, the drop is shallower. When testing and contact 

tracing is introduced, social spending can be scaled back and the economy recovers quickly. Ending social 

distancing without a testing and tracing regime leads to a high death toll and severe economic impacts. 

Results suggest that social distancing and fiscal stimulus have had their desired effects of reducing the 

health and economic impacts of the disease. 
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1. Introduction 

Actions to slow the spread of the COVID-19 novel coronavirus are sharply reducing economic activity, 

thereby putting people out of work, placing significant strains on businesses, and threating a deep recession. 

In this rapidly changing situation there is a need for analytical tools to better understand the economic 

impacts of public health measures. This paper presents a version of such a tool: a combined 

epidemiological-macroeconomic simulation model. Given substantial ongoing uncertainty about the 

epidemic, the model is necessarily stylized. Nevertheless, for illustration and to anchor to a real case as best 

as possible, we calibrate to the United States and reference the US context when making modeling 

decisions. 

The model proposed in this paper is post-Keynesian, sometimes styled “heterodox”, in contrast to more 

“orthodox” neoclassical models. The neoclassical models that have been produced to date are optimizing 

models in which individuals make choices that maximize their intertemporal utility. Following convention, 

workers in these models are assumed to derive utility from consumption and disutility from work. In most 

such models, the primary impact of the disease is on the supply side: workers do not go to work. In the 

models of Morin et al. (2018) and Eichenbaum et al. (2020), individuals choose between engaging in 

economic activities (which expose them to the risk of infection) and distancing themselves. Eichenbaum et 

al. also consider demand effects, as people reduce consumption to avoid exposure, building in an estimation 

of utility while infected or recovered. Morin et al. argued that through a combination of positive externalities 

– reducing others’ exposure to the disease – and negative externalities – reducing economic activity – 

personal choices are socially sub-optimal. The role of policy is to alter the personal costs and benefits to 

shift behavior in socially optimal ways. 

The pre-pandemic model of Morin et al. and the early pandemic model of Eichenbaum modeled the effect 

of policies through a tax, which serves as a proxy for the internal calculations of individuals as they respond 

to public health measures (Eichenbaum et al. 2020, p.5). For example, Morin et al. (2018, p.287) suggest 

mandatory sick leave without pay as a policy to increase personal avoidance measures. This approach 

becomes difficult with directive policies such as shelter-in-place ordinances, because such models would 

require modified individual utility functions to include a trade-off between the benefits of flouting the law 

and the costs of the penalty. Rather than go this route, more recent models, such as that of Fornaro and 

Wolf (2020) and Guerrieri et al. (2020) directly include the possibility that people may be forbidden to go 

to work. 

A question raised in the papers of Fornaro and Wolf and Guerrieri et al. is the extent to which the supply 

shock – that is, a change in the number of workers showing up for work – translates into a demand shock – 

a change in demand for goods and services. The optimizing framework these models employ makes such a 

linkage unlikely, because prices are assumed to adjust to bring the economy to full utilization. The authors 

therefore invoke additional mechanisms that block full adjustment. Fornaro and Wolf (2020) follow recent 

debates on “secular stagnation” (Summers 2014; Teulings and Baldwin 2014) and propose a limit to price 

flexibility: the zero lower bound to the interest rate. Guerrieri et al. (2020) emphasize the fact that 

employment cannot respond flexibly in a sector that has been shut down and the goods it produces cannot 

be bought at any price. 

Constraining the price-driven adjustment mechanisms allow optimizing models to produce outcomes 

qualitatively similar to those we observe in the real economy, but also illustrate the lengths to which the 

optimizing behavior must be modified in order to mimic real-world outcomes. This exemplifies well-known 

limitations of neoclassical macroeconomic models (Shaikh 2016, chap.3; Solow 2008) with their 
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underlying rational actor assumption (Kirman 2014), made in the service of (problematic) 

“microfoundations” (King 2012). We do acknowledge that individuals appear to make a personal 

assessment of risk when deciding on ordinary health protective measures, such as vaccinations and check-

ups (Janz and Becker 1984). Such documented individual decision-making can inform a worker choice 

model, as argued by Morin et al. (2018, p.286). However, given the rather clear and extraordinary 

motivations for avoiding gathering in dense groups, we find it more plausible with the COVID-19 pandemic 

to directly represent the impact of public health measures without passing through a questionable individual 

optimizing calculation as an intermediate step. 

In the post-Keynesian model presented in this paper, we represent public health measures as causing a fall 

in demand. Certainly both supply and demand factors are active. The spread of the disease throughout the 

world is disrupting global supply chains, while maintaining a safe distance, even in businesses deemed 

“essential”, means lower productivity.1 Moreover, simulations with the model developed in this paper 

exhibit supply-chain constraints on hospitals if COVID-19 is allowed to spread unchecked. 

Nevertheless, from the point of view of a business deemed “non-essential”, requiring the business to close 

its consumer-facing outlets is more similar to a withdrawal of demand for its goods or services than it is a 

withdrawal of willing labor. Even without an order, public health messages encourage people to stay home 

as much as possible, which is directly experienced as a loss of demand. Indeed, we can question whether 

the primary impact of the public health response is a loss of labor supply due to an individual utility-

maximizing calculation. At least in the US, when faced with rental payments and expenditure on food, 

utilities, and other necessities, many people have no option of withdrawing their labor. The cost of 

necessities is not small. For the US population as a whole, the total of shelter, food at home, utilities, health 

insurance, and medications accounted for 39% of expenditure in 2018.2 For the lowest-earning fifth of the 

surveyed population, those categories accounted for half of expenditure. Under a shelter-at-home order, 

households will likely see that share rise as they spend more on food at home and utilities, while they cannot 

easily reduce spending on rent, health insurance, or medication. Without sufficient income, they must 

curtail other expenditure, even on such necessities as clothing. If they cannot negotiate a reduction or 

deferral of rent payments, they may face eviction. 

The loss of demand in directly-impacted businesses leads to a loss of business income, layoffs and 

furloughs. In post-Keynesian theory, firms are assumed to plan their investment in anticipation of demand, 

making such models “demand-led”. This suggests that directly impacted sectors will curtail investment, 

itself a source of demand. As firms in those sectors lay off workers, the fall in wage income means lower 

spending on the goods and services offered by firms that are not directly impacted. Moreover, to the extent 

that investment is curtailed, the firms who would have produced the investment goods will see their 

revenues fall, potentially leading to further job losses and a further decline in investment. That is not true 

of all firms – some sectors may benefit from the increase in online activities and purchases. Nevertheless, 

a loss of demand has a potentially substantial multiplier effect both through consumption and investment 

expenditure. 

For households that could purchase goods and services but do not because of public health measures, the 

counterpart to reduced expenditure is greater saving. That saving can fund an expansion of unemployment 

 

1 Some food processing plants have not altered their production routines and have been hotspots for COVID-19 

(https://www.washingtonpost.com/business/2020/04/28/trump-meat-plants-dpa/, accessed 30 April 2018). 
2 U.S. Bureau of Labor Statistics Table 1110. Deciles of income before taxes: Annual expenditure means, shares, 

standard errors, and coefficients of variation, Consumer Expenditure Survey, 2018. 

https://www.washingtonpost.com/business/2020/04/28/trump-meat-plants-dpa/
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benefits and other stimulus, keeping the money in circulation, supporting households who have lost income, 

and buffering the decline in GDP. 

The model presented in this paper is a simulation model, rather than an optimizing model. It seeks to 

simulate the macroeconomic impacts of the epidemic and of the public health measures to contain it. 

Reductions in demand due to infection and sheltering in place drive a deep recession that is enhanced 

through multiplier effects. Aggressive social distancing significantly reduces the number of deaths but leads 

to a stronger recession. A fiscal stimulus helps households maintain needed expenditure until an effective 

testing and contact tracing regime is in place. 

2. Epidemiological model 

We use an aggregate or “compartmental” epidemiological model in this paper. Such models track different 

fractions of a population who are at different stages with respect to the disease. The earliest and simplest 

such model (Kermack and McKendrick 1927) includes susceptible, infective, and recovered (SIR) 

populations. COVID-19 is characterized by a long incubation period, so a modification to SIR, the SEIR 

model, is used most often (e.g., Fang et al. 2020; Li and Feng 2020; Rocklöv et al. 2020; Zhang et al. 2020). 

The SEIR model adds an “exposed” population to the other three that has contracted the virus but is both 

asymptomatic and non-infectious. Analyses of COVID-19 have extended the SEIR model to, e.g.: add a 

“confirmed” category (Zhan et al. 2020); implement exposed population dynamics using a time delay 

(Menendez 2020); explicitly model quarantine (Chatterjee et al. 2020); track populations by age groups 

(Matrajt and Leung 2020); and consider a variety of partially and fully infectious pools (Chowell et al. 

2020). Alternative modeling strategies include a regression model (Gupta et al. 2020), a Bayesian model 

that takes observed country experiences as priors (Liu and Guo 2020), and, importantly for the US context, 

a statistical cumulative death rate model (the IHME model: IHME COVID-19 health service utilization 

forecasting Team and Murray 2020). The IHME model, which is continually updated, is reportedly an 

important input into planning by the US Federal Administration. 

Compartmental models are normally represented by a system of continuous-time coupled nonlinear 

differential equations. However, this approach has well-documented problems (Lloyd 2001a; Lloyd 2001b; 

Wearing et al. 2005). Of particular concern is that people move out of the infective pool with an exponential 

decay. There is therefore never a time when the infective population goes to zero, even if the introduction 

of new cases through in-migration is brought to zero. Grant (2020) proposes an alternative, matrix, 

formulation in which the time in days since exposure and since becoming infective is tracked explicitly. 

We follow Grant by constructing a discrete-time matrix SEIR model of epidemiological dynamics. 

We make a further change that is particularly important in a large country such as the US: uneven spread 

of the disease. The SEIR model assumes that any susceptible individual has the same probability of 

encountering an infected individual as any other susceptible individual. This implies that the infected 

population is evenly distributed throughout the population. In reality, the infected population is unevenly 

distributed, so some epidemiological models, such as the IHME model, use state-level data. We modify the 

standard SEIR model to take inhomogeneity into account at a national aggregate level. 

We offer an important caveat: Only epidemiological models accepted by epidemiologists should be used 

as a basis for forecasts of cases and deaths during the pandemic.3 Models used for policy are continually 

updated and spatially disaggregated. We have attempted to make good use of existing models and 

 

3 The US Centers for Disease Control (CDC) provide a continually updated set of outputs from a suite of models 

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html. 

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
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epidemiological studies in constructing the epidemiological sub-model, but the focus of this paper is 

economics. 

2.1. Matrix SEIR model 

Both the epidemiological and macroeconomic models run at a daily time step. The SEIR model splits the 

total population N, which declines due to mortality from the disease, into a susceptible population Ns, an 

exposed population Ne, an infective population Ni, and a recovered (and presumed immune) population Nr. 

We ignore normal mortality, but estimate excess mortality due to the disease. We also ignore births and 

immigration. 

Following Grant (2020, p.4), people move from the susceptible to the exposed category at a model-

dependent rate that we denote re. There is a maximum number of days for incubation, m, and a maximum 

number of days for remaining infective, n.4 It is possible for individuals to move out of the exposed category 

or the infective category earlier than that, as given by fractions of the population transitioning from one 

category to the next. We indicate these fractions below with the symbols rit and rrt. Infective individuals 

may also die from the disease, at a daily rate dt. In contrast to Grant, we do not allow for reinfection or loss 

of immunity. Our matrix model is given by the following equation, where a “+1” subscript means a 

subsequent day and parenthesized numbers in superscripts is the days since exposure or infection. 
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The incubation period of COVID-19 has been estimated to have a median of 5.1 days, with 95% of cases 

exhibiting symptoms between 2.2 and 11.5 days after exposure (Lauer et al. 2020). We approximated Lauer 

et al.’s curve by setting rit to different values when passing from day 1 to day 2, day 2 to day 3, and so on. 

The recovery period (or time to death) covers a wider range. Wang et al. (2020) documented a 

comparatively small number (17) of fatal cases and found a range of 6 to 41 days from the onset of 

symptoms to death, with a median of 14 days and a mean of Ti = 16 days. Of those, 90% of cases lasted 

between 7 and 32 days. We set the total of rrt and dt to different values to mimic that curve. We assume that 

patients either recover or die along that curve in the same proportion. Thus, we allocate between recovery 

and mortality with a fixed ratio d, such that 

 ( ) ( )( ), 1 .t rt t rt rt td d r d r d r d= + = − +   (2) 

 

4 For Grant, m = 2, n = 4, re is denoted by X, ri = 0.100, and rr = 0.003 + 0.277 = 0.300. 
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2.2. Exposure rate 

In the SEIR model, the exposure rate re depends on the size of the susceptible and infected populations. The 

critical parameter is the probability of exposure per encounter between a susceptible and infected individual, 

β, which depends on behavior as well as the characteristics of the disease. We separate this into two factors, 

a baseline rate β0, in the absence of any public health interventions, and an adjustment factor that captures 

the effect of interventions. 

A key uncertainty in the progress of the COVID-19 pandemic is how many people have already been 

infected. There are indications that the number may be quite large, perhaps exceeding confirmed cases by 

a factor of 10.5 We therefore introduce as a model parameter the fraction fv of “visible” cases. This parameter 

does a lot of work in the model. It is conceptually closest to the fraction of confirmed cases, but we also 

use it as a proxy for symptomatic cases. We expect these to be largely overlapping categories, with the set 

of symptomatic cases larger than the set of confirmed cases. We calibrate it to match cumulative deaths 

from COVID-19 in the US and find a value of fv = 13%. 

We set the value of β0 based on an assumed basic reproductive number R0 and the mean infectious period 

Ti as 

 0
0 .

i

R

T
 =   (3) 

We set R0 = 2.25, half-way between the lower and upper limits in Moghadas et al. (2020). Using the mean 

Ti from Wang et al. (2020) gives β0 = 0.14/day. The adjustment factor depends on the particular public 

health measures adopted. We consider three: social distancing, or self-isolation, to an extent σSD; the 

isolation of visible individuals, given by fv; and (through testing and contact tracing) the isolation of a 

fraction σIC of infectious cases. When all three are in place, the factor β is given by 

 ( ) ( )SD IC1 1 max , ,vf  = −  −     (4) 

This expression captures the reduction in the number of interactions a susceptible person will have (1 − 

σSD) and the fraction of infective individuals they might encounter (1 – fv or 1 − σIC). 

2.3. Inhomogeneity 

To represent uneven distribution of the disease, we treat the total population as separated into a large number 

of localities. For the jth locality, we denote the total population by nj, the susceptible population by njs, and 

so on. Within that locality, the rate of exposure per member of the susceptible population, rej, is given by 

the product of the probability of encountering an infective individual per encounter – assumed in the SEIR 

model to be the ratio of the infected to the total population – and the probability of becoming exposed given 

that encounter, which is the parameter β, 

 .
ji

ej

j

n
r

n
=   (5) 

Applying the matrix equation (1), the susceptible population in the subsequent day is 

 

5 See, e.g.: https://www.nejm.org/doi/full/10.1056/NEJMe2009758 (accessed 30 April 2020) and 

https://www.washingtonpost.com/health/antibody-tests-support-whats-been-obvious-covid-19-is-much-more-lethal-

than-flu/2020/04/28/2fc215d8-87f7-11ea-ac8a-fe9b8088e101_story.html (accessed 30 April 2020). 

https://www.nejm.org/doi/full/10.1056/NEJMe2009758
https://www.washingtonpost.com/health/antibody-tests-support-whats-been-obvious-covid-19-is-much-more-lethal-than-flu/2020/04/28/2fc215d8-87f7-11ea-ac8a-fe9b8088e101_story.html
https://www.washingtonpost.com/health/antibody-tests-support-whats-been-obvious-covid-19-is-much-more-lethal-than-flu/2020/04/28/2fc215d8-87f7-11ea-ac8a-fe9b8088e101_story.html
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+ = − = −   (6) 

For the second, nonlinear, term, we note that the sum of susceptible, exposed, infected, and recovered must 

equal the total population, so we can replace njs with 

 .js j je jr jin n n n n= − − −   (7) 

Substituting into equation (5), and summing over all localities, we have 
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The first sum on the right-hand side is simply Ni. For the second, we make the simplifying assumption that 

the distribution of exposed and recovered are uncorrelated with the distribution of infected across localities. 

The average of their products can then be replaced with the product of the averages, in which case the sum 

becomes (Ne + Nr)Ni/N. Adding and subtracting a term Ni
2/N, we have 
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The difference from equation (6) at the national level is in the last two terms. To simplify them, note that 
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The final expression is the last two terms in equation (9), aside from the factor β0k. Meanwhile, the 

expression on the left hand side can also be written 
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where ci is the coefficient of variation of the infected share of the population across localities. Putting this 

together, we have 
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If there is no variation in the infective population between sites, then ci = 0 and this reduces to the expression 

for an individual location in equation (6). Otherwise the inhomogeneity of the infective population tends to 

lower the national average exposure rate. The result is a modified expression for the national exposure rate, 
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e i
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N N
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  (13) 
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2.4. Mortality rate 

We represent the mortality rate d as a product of three factors: the fraction of visible cases fv, the 

hospitalization rate η per visible case, and the mortality rate per hospitalized patient μ. For the 

hospitalization rate per visible case we calculated a demographically-weighted average rate of mildly 

symptomatic cases using age-specific rates from (Moghadas et al. 2020 Table A5). One less than that comes 

to η = 38%. 

We further allow for the possibility that the mortality rate rises when hospitals overflow and beds become 

unavailable (Moghadas et al. 2020). When beds are available, hospitalized patients experience a baseline 

mortality rate μ0. However, for those who cannot be provided a bed due to overflow, the mortality rate rises 

to a higher level μb. This appears to have been the case in Hubei province in China (Ji et al. 2020), which 

experienced an average mortality rate of 2.9% as against other provinces, where the average was 0.7%. 

Baud et al. (2020) estimated confirmed case fatality rates within and outside China. They found that case 

fatality rates have been exceedingly high, around 15%, outside China, but that they were converging over 

time to a value close to 5.7%, again suggesting higher mortality when health care systems are under stress. 

We calculate the baseline mortality rate per hospitalized patient as 

 0

5.7%
.


=   (14) 

We set the bed overflow rate as a multiple of the baseline. The findings reported by Ji et al. (2020) and 

Baud et al. (2020) suggest a factor of three, but practices have improved since the first cases. We assume a 

factor of two, setting μb = 2μ0. Interpreting the fraction of visible cases as a proxy for confirmed cases and 

using the value of fv = 13% reported above gives a baseline mortality rate of 0.74% per infected individual. 

That rate rises to 1.48% when hospitals are severely crowded. 

In any particular locality, there will be a normal level of hospital bed occupancy from causes other than the 

pandemic. As some of those cases are postponed – for example, for elective surgery – the stock of available 

beds will expand. To simplify the model we assume the total number of hospital beds per person to be the 

same value, b, in each locality. Of those, there is normally an excess ε, which rises during the pandemic to 

a higher level εʹ. The number of available beds per person is then equal to εʹb. There is overflow if the 

number of hospitalized infected patients exceeds that value. For locality j, that happens when 

 .
ji

j

n
b

n
     (15) 

This gives a threshold value for the infected fraction fji = nji/nj of 

 
thresh .i

b
f






=   (16) 

Above, we introduced the coefficient of variation of the infected fraction across localities. We now 

introduce an explicit probability distribution. The variable of interest – the infected fraction – is bounded. 

However, we use a normal distribution and require the coefficient of variation to be less than 0.39. (In 

model runs, we assume a value of 0.30.) That ensures that the minimum of the 99% confidence interval is 

positive. With this assumption, the probability in locality j that the infected fraction will exceed the 

threshold is 
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where Φ is the cumulative normal distribution function. The mean exceedance of the threshold per infected 

person, Ei, is given by 
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It is possible to show6 that this expression can be written in terms of the z-value as 

 ( )
21 thresh

2
1

1 ( ) , 1 .
2
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i i

i i i i i

i

c f
E c z z e z

c f

−  
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The average mortality rate at the national level is then 

 ( ) 01 .i i bd E E  =  − +     (20) 

2.5. Epidemiological scenarios 

We ran the model using the parameters outlined above for an epidemiological baseline scenario and three 

variants: isolating visible cases (Epi IV), implementing a 90% effective testing and contact tracing regime 

to isolate infectious individuals (Epi II90), and social distancing that reduces contacts by three-quarters 

(Epi SD75). In all scenarios, interventions begin on March 28 and ramp up to full implementation after one 

month. Scenario estimates of cumulative deaths are shown in Figure 1, together with data and estimates 

from two models – IHME-CurveFit and LANL-GrowthRate – as reported by the CDC.7 The Epi SD75 

scenario fits the CDC’s Covid hub ensemble best. The very high estimated deaths in the Epidemiological 

baseline and Epi IV scenarios show the benefits of social distancing. Without the efforts taken to “flatten 

the curve”, the number of deaths would be much higher. 

 

Figure 1: Cumulative deaths in model runs, compared with observed and model estimates as reported by the CDC 

 

6 The result can be found by taking the derivative of the expectation of eap with respect to a and setting a to zero. 
7 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html, accessed 3 May 2020. 
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The number of deaths per day is shown in Figure 2. Under the Epi SD75 scenario, peak deaths per day has 

already passed. However, that assumes social distancing measures continue indefinitely. If they do, then 

cumulative deaths reach 109 thousand in the model simulation. If they are lifted without an effective testing 

and contact tracing regime in place, then the large remaining susceptible population will begin to encounter 

the small infective population and, as shown below, cases and deaths rise rapidly. 

 

Figure 2: Deaths per day as simulated in the model compared with observations 

The number of new visible cases in the model runs is shown in Figure 3. Also shown in the figure is the 

number of new cases as calculated from cumulative cases reported by the Centers for Disease Control 

(CDC).8 As shown in the figure, the number of reported cases starts more slowly than the model curve and 

then accelerates past it. That likely reflects the approximate way in which we treated heterogeneity; in the 

early stages of the disease the distribution was highly unevenly distributed, centered mainly in New York. 

The discrepancy may also arise in part from incomplete reporting early in the epidemic, while better and 

more extensive testing and reporting in recent weeks may explain the steady observed rate compared to the 

declining Epi SD75 scenario. 

 

Figure 3: New visible cases in the scenarios, compared with the confirmed cases as reported by the CDC 

 

8 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html, accessed 23 April and 2 May 2020. 
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As illustrated in Figure 1, isolating infective individuals is very effective at controlling the disease. 

However, that requires an effective testing and contact tracing regime, as called for in the US guidelines 

for reopening.9 If social distancing measures are removed without testing and tracing, the number of deaths 

will resurge. Simulations from the model are shown in Figure 4 for an “Epi SD75 + ending social 

distancing” scenario in which social distancing ends on June 15 with no testing and tracing regime. The 

simulation results are a sobering reminder that the size of the “second wave” will depend on how effectively 

the susceptible population can remain sequestered from the infective population. 

 

Figure 4: The effect of relaxing social distancing without testing and contact tracing 

3. Macroeconomic model 

The model economy has three sectors: core, social, and hospital. The “core” of the economy contains most 

economic activity. It provides the bulk of household goods and services, intermediate products used in all 

of the sectors (including the core sector itself), and investment goods. The “social” sector is most affected 

by sheltering in place. Furthermore, we assume that while people will spend down savings or go into debt 

to pay for core expenditures, they will not do so for social expenditures, so the social sector is most likely 

to be cut back when households have to curb their expenditure. The “hospital” sector has a baseline level 

of activity and it becomes more active as COVID-19 cases rise. Throughout, we compare to a baseline in 

which all components of the economy, including the wage bill, the capital stock, government expenditure, 

and sector output grow at (or very close to) an exogenous rate of γ = 2.0%/year, close to the recent average 

growth rate in real US GDP. 

We attempt to capture an important issue in the US experience of the pandemic. As hospitals lose their 

usual patients, it frees up beds but reduces revenue, as many COVID patients cannot pay. As a result, costs 

are high, while profits are low or negative. We reflect this in incomplete cost recovery for the hospital sector 

in the model detailed below. 

3.1. Production and income 

The accounting framework for the model is conventional. Total net output (GDP) is the sum of value added 

in the core, social, and hospital sectors. Because this model has intermediate products, the sum of total 

output from each sector exceeds GDP. We denote the three sectors with subscripts: core (c), social (s), and 

hospital (h). We work in real quantities, assuming no change in relative prices between sectors. 

 

9 https://www.whitehouse.gov/openingamerica/, accessed 24 April 2020. 
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The core sector produces goods for its own intermediate use, as intermediate inputs to the other two sectors, 

for some personal consumption, government purchases, and investment. Part of personal consumption and 

investment is provided by imports, at a net rate m. A part of personal consumption expenditure is paid as a 

sales tax. Drawing on input-output data for the US,10 we estimate a rate of τc
sales = 5.6%. With these 

assumptions, output Xc is given by 

 ( ) ( )sales1 1 .c c c s s h h c c cX a X a X a X G m C I = + + + + − − +
    (21) 

In this expression Xs and Xh are output from the social and hospital sectors, Gc is government expenditure 

on core goods, Cc is personal expenditure on core goods, and I is total investment expenditure. Using input-

output data, we estimate the technical coefficients to be ac = 0.428, as = 0.395, and ah = 0.335, while the 

(net) import fraction m = 4.2%. The other technical coefficients (which we ignore) are an order of magnitude 

smaller; the largest is expenditure by the hospital sector on goods and services of the social sector, with a 

technical coefficient of 0.028. 

The social sector only produces goods for consumption, Cs, adjusted by the sales tax rate τs
sales = 6.0%, 

 ( )sales1 .s s sX C= −   (22) 

The consumption function for social goods and services is provided below. 

Demand for hospital services, Ch, is, under normal circumstances, set as a fraction h of the wage bill (set to 

10%, based on input-output data). During the pandemic, it is set to that rate multiplied by ratio of 

hospitalized patients to the normal level. The tax rate on hospital services is very low (about 0.2%), and we 

ignore it. In terms of parameters introduced above, this gives 

 
( )

( )

1
.

1

i

h

bN N
X hW

bN

 



 − +
=  

−  

  (23) 

This is the level of activity that drives intermediate demand for core goods. However, revenues are lower 

than this due to incomplete cost recovery for COVID-19 patients. We assume a marginal cost recovery rate 

for COVID-19 patients rh, so that revenues Yh (and personal expenditure Ch) are equal to 

 
1 1

.
1 1

h h h hY C hW r X hW
 

 

 − − 
= = + − 

− − 
  (24) 

In model runs, we set rh = 25%. 

Value added in each sector Vi (at basic prices) is given by total revenue Yi, less the cost of intermediate 

consumption, 

 

10 U.S. Bureau of Economic Analysis, “The Domestic Supply of Commodities by Industries” and “The Use of 

Commodities by Industries” https://www.bea.gov/industry/input-output-accounts-data (accessed 29 April 2020). We 

used the 15-industry table for 2018, identifying the social sector as the sum of “Retail trade”, “Arts, entertainment, 

recreation, accommodation, and food services”, and “Other services, except government”. We set “Hospital” as 36% 

of “Educational services, health care, and social assistance” based on the breakdown in the 71-industry table. We net 

out the government sector (which largely buys and sells to and from itself), and separately track the government wage 

bill. 

https://www.bea.gov/industry/input-output-accounts-data
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 .i i i iV Y a X= −   (25) 

For the core and social sectors, we assume full cost recovery, so Yi = Xi for those sectors. As discussed 

above, the hospital sector is not able to fully recover costs. Firms pay production taxes on their value added 

at a rate τi
prod. Estimates from the national accounts give τc

prod = 3.9%, τs
prod = 2.5%, and τh

prod = 1.9%. 

Firms are assumed to pay workers a fixed fraction ωi of value added after paying for intermediate goods, 

with ωc = 48%, ωs = 70%, ωh = 81%. For the hospital sector, we set wages based on revenue, so the wage 

bill in each sector is 

 ( ), , 1 .c c c s s s h h h hW V W V W a Y  = = = −   (26) 

The sum of these gives the private wage bill Wpriv = Wc + Ws + Wh. Added to this is the government wage 

bill Wg, which is a multiple ωg of government expenditure on core goods, Wg = ϖgGc, with ϖg = 1.24. All 

wage income is assessed at a tax rate τwage. We estimated the tax rate from the Bureau of Labor Statistics 

(BLS) Consumer Expenditure Survey (CEX) by taking total private tax payments plus the social security 

contribution divided by wages, salaries, and self-employment income. This gave a rate of τwage = 27.7%. 

We allow for wages to be supplemented by unemployment benefits. We set baseline levels of the wage bill 

in each sector, Wi
base, which grow at the baseline rate γ. Unemployment is expected to be quite different in 

the different sectors, and the hospital sector may even see expanded employment. We therefore sum the 

sectoral wage gaps (Wi
base − Wi)+. The notation (x)+ indicates the “positive part” function, equal to x when 

it is positive and zero otherwise. Later, we will use the corresponding “negative part” function (x)−, which 

is equal to x when it is negative and zero otherwise. With this notation, we define unemployment benefits 

U by 

 ( )base

{ , , }

.i i

i c s h

U W W
+



= −   (27) 

The coefficient χ is the coverage of the wage gap. We assume different values for this parameter, below, to 

capture different stimulus strategies. 

Profits Πi are the remainder from total output after wages, intermediate goods, and production taxes are 

paid for. If profits exceed investment, then it is distributed to households. Profits returned to households, 

D, whether directly as distributed profits or indirectly as repayment of loans, are given by the difference 

between profits Π and investment I plus the total of foreign, public, and net household saving (or, if the net 

is negative, zero). Foreign saving is equal to net imports M = m[(1 − τc
sales)Cc + I]. Because we include 

government expenditure on wages in the total wage bill, and calculate profits net of production taxes, the 

expression for net government saving relevant to this calculation is given by the sum of the wage tax Tw 

and total sales taxes Tsales, net of government expenditure on core sector goods and services Gc. Net 

household saving, Sh, is the difference between income from all sources and consumption of goods and 

services. The result is 

 ( )salesmax 0, .h w cD M S T T G I=  + + + + − −   (28) 

3.2. Consumption 

Personal consumption expenditure on hospital services is given by equation (24). For core and social goods 

and services, we take note of some peculiarities of the US. First, unlike other high-income countries, the 

US does not have universal health care. This is reflected in the input-output tables, where 100% of hospital 

expenditures are recorded under “Personal consumption expenditures”. Second, total consumption 
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expenditures exceeds the total wage bill (taken to equal “Compensation of employees”, which includes 

non-wage compensation such as employer contributions to health insurance). So, although some households 

save out of wage income, we simplify the model design by assuming that all saving is out of profits. All 

wages are spent, as are distributed profits as given by equation (28). 

We separate the consumption function in two parts. First, we define basic disposable income Yd, which 

excludes profit income, as the sum of the wage bill W and unemployment benefits U, net of hospital 

expenditures. A fraction c0 of Yd is devoted to expenditures that are very difficult to reduce. These go beyond 

the list of shelter, food at home, utilities, health insurance, and medications, which as noted in the 

Introduction make up 39% of expenditure, to include food away from home, home and car maintenance, 

cleaning supplies, loan payments, education, and clothing. Based on expenditure patterns in the US, we set 

this to c0 = 60% of Yd. We set the initial value of these core expenditures to an irreducible minimum level 

Cc0 = c0Yd0. Otherwise, basic core expenditures rise with basic disposable income and are equal to c0Yd. 

Beyond the basic core consumption level, we assume that households spend on core goods at a marginal 

rate cm out of the remaining income and profits. Defining c = c0 + (1 – c0)cm, we have 

 ( ) wage

0max , 1 .c c m hC C c D c U W C = + + − −
 

  (29) 

We calibrated cm to get value added shares close to those reported in the input-output data, finding 

cm = 60%. This gives a value for c of 80%. 

Expenditure on “social” goods depends on the fraction of the population that is infected or “visible”, and 

on social distancing. We further assume (somewhat optimistically) that symptomatic individuals (proxied 

by visible cases) always avoid consuming social goods. Because many firms in the social sector can remain 

open to some degree (e.g., by adding delivery or take-out service, or by switching to an online format), we 

do not assume that social distancing translates one-to-one into a reduction in social sector expenditure. We 

introduce an economic impact quotient q. There is little basis for estimating this important parameter, which 

we set at q = 0.5 in the model runs. Taking these factors into account gives an activity reduction factor φ, 

where 

 ( )SD IC1 max , , .i v iq f f f  = −   (30) 

We then set consumption of social goods equal to 

 ( ) ( ) ( ) wagemax 0, 1 1 1 .s m hC c D c U W C  = − + − + − −
 

  (31) 

This is the channel through which the COVID-19 epidemic impacts upon the economy. As social interaction 

is reduced or people become ill, they reduce expenditure on “social” goods and services. Through equation 

(21), this reduces demand for core goods and services as well. As economic activity declines, investment 

declines as well, as discussed below. This has a further, multiplier, effect on the economic activity. The 

result is a recession, underutilization of capital, and unemployed workers.  

For any sector i, output is given by the capital stock multiplied by capital productivity and utilization, 

 .i i i iX u K=   (32) 
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The capital stock in each sector is expanded through investment and depleted through depreciation,11 

 .i i iK I K= −   (33) 

We set the depreciation rate δ to 5%/year, based on values from the Penn World Table 9.1 (Feenstra et al. 

2015) and calibrated capital productivity to reproduce the GDP and investment expenditure reported in the 

input-output tables. 

3.3. Investment 

Total investment expenditure – and therefore the demand for investment goods – is the sum from all sectors, 

 
{ , , }

.i

i c s h

I I


=    (34) 

Following standard post-Keynesian (neo-Kaleckian) theory (Kalecki 1969; Weintraub 1979; Dutt 1984; see 

Lavoie 2014), we assume an investment function that depends on capacity utilization (Lavoie 1995). The 

investment rate is above baseline when capacity is above its normal level and below baseline when it is 

below its normal level. 

In the hospital sector, investment is expected to rise above baseline, which translates into increased bed 

capacity. We allow capacity utilization to rise well above 100% as hospitals stretch their available capacity 

to meet the crisis. However, they may be constrained by their supply chains: we limit capacity utilization 

in the core goods sector to 100%. In the social sector, we expect capacity utilization to contract and 

investment to fall below baseline. In the core goods sector, utilization and investment can either rise or fall. 

We assume that firms will, if they can, always replace depreciated capital. However, a certain number will 

not be able to sustain a long downturn, and will close down. In that case, they will have net negative 

investment, as their abandoned capital depreciates and is not replaced. We further assume that investment 

rates have a maximum limit. This applies to the hospital sector, which will face bottlenecks when trying to 

expand capacity if the number of cases rises rapidly, but which will be able to gradually expand capacity if 

the curve is flattened. 

After the infection rate has passed its peak, firms start to build in an expectation that the economy will 

recover. This is reflected in a lower weight on utilization being below baseline. Investment is still depressed 

in that case, but to a lesser degree. 

Taking all of these factors into account, the (gross) investment rate depends on utilization, profit rates, and 

common (net) long-run growth expectations in the following way, 

 ( ) ( ) min ,max , .i i
i i d i d

i

I
g u u u u

K
     

+ −
 = = + − + − + −    (35) 

Here, ud is a desired or target utilization level, which we set to 0.85. The factor θ says how much larger 

investment can be over the normal rate, which is relevant to the hospital sector. There is no obvious source 

of data for this, and we set it equal to 1.1. The factor φ is the fraction of firms that close down when 

utilization is low, set to 10%, while the factor ψ is equal to one before the infection peak and (optimistically) 

to zero afterwards. That is, after the peak, businesses act as though the economy will grow at its prior rate, 

 

11 In principle, these equations should be solved simultaneously. For simplicity, we use lagged values, but that means 

that we must anticipate one day’s wage growth. We do that by using the lagged growth in the core sector capital stock. 
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despite low consumer demand. We assume the sensitivity of the investment rate to the utilization rate, α, is 

0.25/year. This is similar to the total effect of sales on investment found by Fazzari and Mott (1986). 

3.4. Economic scenarios 

In addition to the macroeconomic baseline scenario, we ran three alternative scenarios. The first, Epi Macro 

II90 U10,12 features intensive testing and contact tracing to support a 90% effective isolation of infected 

individuals. Unemployment benefits cover 10% of lost wages. The second, Epi Macro SD75 U10, is our 

best-fit epidemiological scenario as shown in Figure 1, in which contacts between susceptible and infective 

individuals are reduced by 75%, with the additional assumption of 10% coverage of lost wages. The third, 

Epi Macro SD75 U100, assumes 100% coverage of lost wages. 

GDP relative to the baseline for the three epidemiological scenarios are shown in Figure 5. As seen in the 

figure, when infective individuals can be effectively isolated, the impact on the economy is minimal. When 

they cannot, social distancing has a substantial economic impact. With 10% of lost wages covered by 

unemployment, GDP falls by 5% relative to the baseline, close to the first-quarter decline in US GDP of 

4.9%.13 According to the model developed in this paper, the economy falls no further than that, as 

consumption levels stabilize. However, the coincidence with observation should be treated cautiously: the 

precise value depends on uncertain parameters, in particular the economic impact quotient q. When 100% 

of wage loss is covered by unemployment benefits, the fall in GDP is one percentage point less, at 4%. 

 

Figure 5: GDP in scenarios: % deviation from baseline 

A few days after the contraction begins, the simulated average profit rate in the Epi Macro SD75 U10 

scenario is 9.5% below baseline, due to falling profitability in the hospital sector and loss of income in the 

social sector. Over a period of several months (longer, but within a usual macroeconomic “short run”), the 

average profit rate is 5.2% below baseline, as COVID-19 cases recede and profits stabilize. The fall is less 

severe if 100% of lost wages is covered by unemployment: 7.8% in the short term and 2.7% over several 

months. Thus, covering unemployment helps support both wage-earners and those receiving profit income. 

Moreover, whether 10% or 100% of lost wages is covered by unemployment, cumulative household savings 

 

12 The difference between the “Epi” and “Epi Macro” scenarios is that bed capacity endogenously expands in the 

latter, while it remains fixed in the former. This has a small effect on mortality rates due to overflow. 
13 https://fred.stlouisfed.org/series/GDPC1, accessed 3 May 2020. 
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in model simulations exceeds cumulative unemployment benefits. This suggests that the expansion of 

benefits can be funded by domestic savings. 

There is much current discussion of the benefits of ending social distancing in order to mitigate economic 

impacts. Indeed, social distancing must end at some point. If it is replaced by a regime of testing and contact 

tracing that allows for effective separation of susceptible and infective individuals, then model simulations 

suggest that the economy can recover quickly. This is shown in Figure 6 in the scenario Epi Macro SD75 

II90 U10, in which a 75% effective social distancing regime (SD75) is followed by a 90% effective strategy 

of isolating infective cases (II90). The recovery occurs as people with employment or non-wage income 

expand their expenditure on social goods and services, allowing those workers to return to work. As can be 

seen in Figure 6, the recovery is unrealistically rapid in the simulation. In fact, a gradual opening up would 

be expected. Nevertheless, the simulations suggest that the economy can “bounce back”. 

If social distancing ends with no controls on the spread of the disease, then, as shown in Figure 4, deaths 

increase substantially. We do not show macroeconomic model runs for this scenario, because the model is 

not designed to capture the effects of an overwhelmed hospital system. Nevertheless, we report some of the 

broad indications. The large second wave of cases seen in Figure 4 is reflected, perversely, in a temporary 

boom – an expansion in GDP, after an initial dip. However, this is a misleading statistic. The boom is due 

to expansion of the core sector as it struggles to supply the overburdened hospital sector. In the simulations, 

profits, household saving, and demand for social sector goods and services collapse as households divert 

expenditure towards paying for hospital services. 

 

Figure 6: GDP: % deviation from baseline under social distancing replaced with testing and tracing 

4. Discussion and conclusion 

In the US, political and policy debate on COVID-19 has centered on the economic impacts of public health 

measures. That debate can be informed by linked epidemiological-macroeconomic models. This paper 

presents such a model. Given the very high uncertainties surrounding the epidemic, the model is stylized 

and intended for broad scenario exploration rather than projection. The post-Keynesian model presented in 

this paper treats the impact of the pandemic as a “demand shock”; that is, as an externally-driven fall in 

demand for goods and services. Both aggregate supply and aggregate demand impacts are expected (Correia 

et al. 2020; Eichenbaum et al. 2020), but in contrast to some recent neoclassical treatments (Fornaro and 

Wolf 2020; Guerrieri et al. 2020), we view the epidemic as primarily affecting demand. 
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Several scenarios are presented. One that features aggressive testing and contact tracing has minimal 

impacts on the economy while keeping deaths extremely low. This finding underscores the consistent 

message from public health experts that testing and tracing are preconditions for safely reopening the 

economy. Without it, cases and deaths can rise rapidly when the economy reopens as the large remaining 

susceptible population encounters the small but persistent infective population.14 This severely burdens the 

hospital system. In a scenario with no testing or contact tracing, but with strong social distancing, the model 

economy experiences a sharp and deep recession. 

The fall in GDP arises in the model through a Keynesian mechanism. Demand falls for goods and services 

provided by “social” businesses such as restaurants, due to social distancing or illness, while consumer 

demand for “core” goods and services is crowded out by rising hospital costs. This decline in primary 

demand leads to secondary impacts as wages fall, demand for intermediate goods contracts, and investment 

slows. The initial drop is thus amplified through wage, intermediate goods, and investment multipliers. 

The Keynesian remedy is fiscal stimulus, while the epidemiological remedy is testing and contact tracing 

(at least until a vaccine is developed). The model runs suggest that the current combination of social 

distancing and fiscal stimulus, in the form of wage support, are having the desired effect of constraining 

mortality and mitigating economic harm. In combination, fiscal stimulus and testing are very effective. 

Fiscal stimulus keeps households out of debt and mitigates the recession until the testing and tracing regime 

is in place. Without testing and tracing there is a very large number of deaths. Without fiscal stimulus, 

households who have lost income due to public health measures will be unable to make needed expenditures 

on food, rent, medications and other essentials. 

The sustainability of deficit spending is a contentious topic. A prominent strand of post-Keynesian theory, 

Modern Monetary Theory, argues that constraints on central government expenditure are weak to non-

existent (Wray 1998). The theory is controversial even among post-Keynesians (Fullbrook and Morgan 

2019; Juniper et al. 2014; Lavoie 2019). Yet, there is no disagreement that deficit spending is an effective 

way to stimulate a depressed economy. Moreover, the model runs suggest that excess saving due to curtailed 

expenditure by the still-employed population is more than enough to fund the wages lost by the unemployed 

population. The federal government must take on additional debt, but the debt will be owed to its citizens. 

The simulations also show that, by sustaining expenditure, unemployment coverage mitigates the loss of 

profits. 

The simulation results are reassuring, but only if a thorough testing and contact tracing regime is put in 

place. If it is, then wage supports are needed in the interim, but they can be rapidly scaled back once 

infective individuals can be identified and isolated. In that case, social distancing measures can be relaxed 

and the model economy recovers rapidly. However, if the economy is reopened without the ability to 

identify and isolate infective cases through testing and contact tracing, then the number of deaths can rise 

rapidly, with severe economic impacts and a disastrous human toll. 

 

14 In the public debate, two camps have been identified: “big-denominator” and “the cases are the cases”. The first 

proposes that large numbers of people have already been exposed but were asymptomatic. Adherents suggest that 

because we may have a large invisible pool of recovered cases, we may be close to the point of herd immunity and so 

should open up. The “cases are the cases” viewpoint is that the only data we have is the documented cases and it would 

be irresponsible to act on supposition. In the model in this paper, we allow for a substantial number of asymptomatic 

individuals (87% of infective cases), but they are carriers of the disease. The model in this paper thus does not go as 

far as “the cases are the cases”, but nevertheless the results do not support the big-denominator hypothesis. 
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