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Abstract: This paper proposes a formalization of Hyman P. Minsky’s theory of financial instability. The 

model includes private-sector borrowing, capacity utilization, and the stock of private-sector debt. The 

model is based on self-reinforcing borrowing and output dynamics that repeatedly come to a sudden 

stop, with discontinuous downward jumps in the three variables. The paper treats as endogenous the 

instantaneous probability of a jump and the size distribution of jump vectors. Formally, the model 

comprises three ordinary differential equations and a compound Poisson process, with jumps drawn 

from a heavy-tailed stable distribution.  The paper shows it can be stated in three equations in the jump 

differentials and the usual differentials. A section sketches a nonlinear mechanism that can bound the 

system. The paper analyzes the dynamics of a simplified version of the main model and a more-SFC 

model with feedbacks from debt to borrowing and capacity utilization via debt-service effects. The 

paper reports (1) eigenvalues for the linear parts of both the simplified analytical model and a numerical 

example of the more-SFC model, (2) a phase diagram for the analytical model, and, (3) analytical 

stability conditions for the more-SFC model.  The model replicates the upward instability and abrupt 

crises of Minsky’s theory. 
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I. Modeling Minsky Probabilistically in Three State Variables 

The exact timing of the onset of a financial crisis is random as far as we know. In a series of papers 

written alone and with a coauthor, the author has proposed a formalization of Minsky’s theory of 

financial crises (Hannsgen 2012, 2013; Hannsgen and Young-Taft 2015, 2017). 

Three key elements of this model were:  

1) A tendency toward growth and financial expansion that develops spontaneously in the aftermath of a 

financial crisis. 

2) A measure of financial risk or fragility that rises over time following the end of a financial crisis, in 

keeping with Minsky’s key point that the financing structures of capitalism are conducive to the 

emergence of financial fragility (e.g., Minsky 1977, 66; 1986, 213).  

3) a nonhomogeneous Poisson probability model (e.g., Ross 1997, 235‒302, esp. 277‒81; Walde 2011 

225–238), in which a crisis is a jump in state variables that occurs in any interval of time with a 

probability that depends on economic and financial variables. Jumps occur within a model that 

generates otherwise smooth trajectories.1  

As Minsky put it, “Whereas experimentation with extending debt structures can go on for years…the 

revaluation of acceptable debt structures, when something goes wrong, can be quite sudden” (1977, 

67).  

Discussion of the Literature: The model is closely related to many in the literature. In early work, Minsky 

(e.g., 1959) himself suggested a jump model of sorts in the form of a discrete-time multiplier-accelerator 

model that restarted at new initial conditions when it hit a ceiling or floor. Among the factors that could 

impel the economy to its ceiling would be a financial boom. For some parameter values and 

assumptions, the model could generate cycles. 

The literature developing models based on Minsky’s theory of financial instability is large. Surveys by 

Dos Santos (2005) and Nikolaidi and Stockhammer (2017) and an essay by Ferri (1992) provide 

overviews of what Dos Santos dubbed the “formal Minskyan literature” (2005, 711)  

At least three early analytical looks at Minsky posited formal models (Taylor and O’Connell 1985; Lavoie 

1986–87; Keen 1995). Taylor and O’Connell (1985) emphasized the role of interest and profit rates in an 

early effort to integrate Minsky into a structuralist growth model. Lavoie (1986–87) sharply criticized the 

standard Minskyan story in which inevitably rising interest rates play a part in a fall in the rate of profit, 

leading to crisis. As he showed, this profit-squeeze version of Minsky assumes a great deal about the 

dynamics of other variables. Keen (1995, 2011) incorporated key elements of Minsky (1977, 1986) and 

Goodwin (1967) into a multidimensional, continuous-time model of growth, distribution, and 

employment.  

Subsequent efforts incorporated endogenous money with interest-rate-setting by the central bank or 

the financial sector. Of course, Minsky himself (e.g., 1986, 131) opposed the standard IS-LM model and 

 
1 Poisson jump processes were deployed in the neoclassical version of Schumpeterian endogenous growth theory 
(Aghion and Howitt 1997, 55).  
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its assumption of an exogenous stock of money.2 Building from Taylor’s paper, Foley (2003) constructed 

an open-economy, Kaleckian Minsky model in which the real interest rate is the central bank’s control 

variable. Hannsgen (2005) built a Minsky model with output depending on the change in a central-bank 

interest rate, based on the implications of maturity transformation by typical depository institutions. 

Also along horizontalist lines, Lima and Meirelles (2007) suggest a model with bank rate markup 

dynamics.  

Another group of papers can be grouped together based on concerns related to sweeping changes in the 

financial structure and the distribution of income taking place since the 1970s. These include financial 

market inflation and increasing indebtedness of consumers. Hein (2012) applies the Kaleckian model, 

examining the stability of the household debt-to-capital ratio. Passarella (2011) constructs an SFC 

monetary-circuit account of falling financial soundness in an era of financialization. Bhaduri (2011) 

models an economy with rising debt and financial market inflation based on threshold principles, 

allowing for the kind of discontinuous phenomena that we attempt to model below. Skott (2013) looks 

at the effects of rising inequality on the stability of equity markets, using variables for portfolio 

allocation to equity, expected returns, and actual returns. Finally, Dafermos (2018) integrates a 

Kaleckian Minsky model into a higher-dimensional framework based on the national accounting identity 

that links the three main sectoral balances, à la Godley and Cripps (1983, 281–304). 

Recent work by this author (e.g., Hannsgen 2012; Hannsgen and Young-Taft 2015) seeks to contribute to 

this literature. It features endogenous money (e.g., Robinson 1962, 45, 1970; Godley and Lavoie 2012, 

especially 127–28, 198–200; Rochon 2003), consistent with, for example, Lavoie (1986–87), Foley 

(2003), and Lima and Meirelles (2007). In such an approach, actors such as the government and banks 

have control over interest rates at any given point in time but rather naturally may change them over 

time in response to changes in economic conditions or psychological variables, but not simple excess 

demand for loanable funds or goods. These changes in interest rates may in turn influence the values of 

other variables. Moreover, of course, levels and growth rates of money are not under the control of 

policy authorities, as they are in the IS-LM framework adapted by Taylor and O’Connell (1985) (Minsky 

1986, 129–33; Robinson 1970; Rochon 2003).   

Following for example Dutt (2006) and Asada (2012), this paper allows quantities of (nominal-capital-

stock-normalized) debt—rather than, say, putatively demand-led changes in interest rates—drive the 

tendency to financial fragility. With the addition of more state variables, we could also make bank rate 

markups or bond yields or both fluctuate, independently of the central bank rate (Hannsgen and Young-

Taft 2015; Lima and Meirelles 2007). Thus, our endogenous-money approach in no way rules out 

dynamics in the interest rates that are most crucial for nonfinancial businesses and households.   

Like for example, Dutt (2011) and Datta (2015), a series of papers by this author—written alone and 

with Young-Taft—has deployed intangible fragility variables, but it has sought to improve on previous 

efforts by conceptualizing fragility as a latent quantity determining the probability of a future crisis. As in 

Keen (1995), these models featured fiscal-policy reaction functions and variable income distribution.3  

 
2 See also Robinson (1970).  
3 On the other hand, they included independent investment-over-capital functions and variable capacity utilization, 
which would appear to us to align them more closely with the effective-demand vision of Keynes (1936), Robinson 
(1962), and Kalecki (1965).  
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Authors constructing dynamical Minsky models have often posited that growth and output are “debt 

burdened.” For example, Asada’s model (2012) featured debt–capacity utilization dynamics with 

feedback effects he summarized as follows 

𝑑 ↑ → 𝑦 ↓↓ 

𝑦 ↑ →  𝑑 ↑↑ 

The double arrows indicate acceleration in rates of change. Higher debt reduces the rate of increase of 

output, and higher output increases the rate of increases of debt. Asada demonstrates the emergence 

of a limit cycle via a Hopf bifurcation. In another 2D approach with a quantity-of-debt variable, Taylor 

(2011, 195–97) posits a Goodwin-like Minsky cycle in the capital-stock growth rate and a debt ratio. His 

cycle starts with an exogenous downward jump in animal spirits.  

Relatedly, one frequently used modeling strategy in deterministic models with financial fragility variables 

(e.g., Datta 2015, Dutt 2011) is to make borrowing, output, or the investment accelerator depend 

inversely on fragility. Deterministic debt-burdened or fragility-burdened models are characterized by 

self-limiting upturns—probably resulting in greater stability than Minsky saw in capitalist economies. In 

contrast, this paper’s stochastic approach allows for a financial and output-employment boom followed 

by an abrupt bust, more in the spirit of Keynes’s theory of crisis (1936, 315‒324), as fleshed out by 

Minsky (e.g., 1977). Hence, our model will account in principle for irregular cycles in which borrowing-

fueled booms develop, then end in sudden, hard-to-forecast, discontinuous events. Rosser (2019) has 

recently expressed the similar view that a Minsky crisis constitutes a “revenge of entropy.”  

The paradox-of-debt critique of Minsky emphasizes that the denominator of leverage measures can rise 

along with the numerator (e.g., Lavoie 1987; Seccareccia and Lavoie 2001). The model below features 

rising leverage in the sense of a rising ratio of private-sector debt to capital. Our presentation leaves 

open the nature of the private debt, meaning it could be household debt, as in Dutt (2006), Hein (2012), 

or Passarella (2012).  

As in Dutt (2006), the model developed here uses a differential equation for a net borrowing ratio. Debt 

L modeled as the integral of net “financial risk-taking” b. In the model below, during a boom, 

(normalized) borrowing, capacity utilization, and (normalized) private debt all potentially increase. A 

crisis brings a sudden end to these self-reinforcing financial-real dynamics with a downward jump in all 

variables. We use the intuitive assumption that the instantaneous probability of a crisis is related 

positively to L and (optionally) negatively to capacity utilization u.   

To revert for a moment to Asada’s (y, d) notation for normalized output and debt plus our borrowing 

variable b, the deterministic part of the model below will combine the following unstable and zero-root 

feedback effects: 

𝑏 ↑ →  𝑦 ↑↑ 

𝑦 ↑ → 𝑏 ↑↑ 

𝑏 ℎ𝑖𝑔ℎ → 𝑑 ↑;  𝑎𝑛𝑑 𝑏 𝑙𝑜𝑤 →  𝑑 ↓ 
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Increases in the flow of net borrowing and aggregate demand reinforce one another.  Also, net 

borrowing adds to debt via a stock-flow identity. 

At times, especially in Section VII, we will also consider deterministic financial-stock effects that yield, 

among others, the three additional feedbacks: 

𝑑 ↑  →  ↓↓ 𝑏, ↓↓ 𝑦, ↑↑ 𝑑 

The model of this paper is related to stock-flow consistent (SFC) models (Dos Santos 2005; Le Heron 

2011; Lavoie and Godley 2012; Passarella 2012; Caverzasi and Godin 2015). Most current SFC models 

use a discrete time methodology and a relatively large number of variables. Hence, analysis of stability 

relies on simulations. In the SFC literature (e.g., Godley and Cripps 1983; Godley and Lavoie 2012; Le 

Heron 2008), changes in animal spirits and other psychological variables are often induced via assumed 

non-stochastic shifts that are routinely and perhaps confusingly referred to as shocks (Hannsgen 2013).  

Our dynamic, stochastic approach allows for the simulation of histories with multiple jumps in which the 

probability of jumps depends on goods demand and debt.4 Keynes (1936, 247) himself made it clear 

that, ultimately, his “psychological factors” were endogenous. Like the SFC approach, ours responds to 

an aspect of Robinson’s point that an economy must be seen as evolving in historical time, rather than 

moving toward equilibrium in “logical time” or always remaining in equilibrium (Robinson 1962, 23–39). 

Crises induce path-dependent change. The endogeneity of the arrival rate of crises to a financial ratio is 

one crucial way that the model differs sharply from neoclassical stochastic approaches that attribute 

macroeconomic fluctuations to random movement.  

Justifying this new work: In the previous work mentioned above by this author, the Minsky block was 

part of a larger Post Keynesian model drawing from Kaldor (1940) and Kalecki (1965) that focused on the 

use of public spending with chartal (fiat) money to stabilize fluctuations in capacity utilization (Hannsgen 

2012; Hannsgen and Young-Taft 2015). The Minsky component superimposed a financial cycle on 

Kaldorian business cycle dynamics tempered by countercyclical fiscal policy, with the added 

complication of “Radical”-stagnationist5 (Taylor 1985, 386) distribution-output dynamics. So far, 

Hannsgen (2014), a revised version of Hannsgen (2012), is the only published result of these efforts, and 

the Minsky block was excised from that article for the sake of brevity and concrete results. Since the 

Poisson Minsky model is not intrinsically connected to the larger framework in that paper, it can indeed 

be stated in isolated form.  

 
4 The literature proposing Minsky models has developed in a number of other directions. Charles (2008) 
endogenizes the corporate retention rate. Ryoo (2013) offered an alternative way of resolving the seeming 
dilemma of the paradox of debt versus Minsky. Charpe et al. (2011) offered a variety of mostly neoclassical 
synthesis approaches using continuous time dynamic models. Minsky’s onetime coauthor Ferri has demonstrated 
(e.g., 2011) the utility of a regime-switching stochastic model for modeling Minskyan instability. The model 
developed in this paper features point-in-time crises, like those in Nishi (2012) and Bhaduri (2011, 1005–07), but 
these latter are based on deterministic threshold phenomena. Finally, I have not addressed the literature 
developing models with large numbers of heterogeneous agents.  
5 The term Radical in the Taylor’s terminology stems from the use of a countercyclical markup or profit share in 
models by many members of the Radical Political Economy school and the fact that the theory of distribution most 
closely associated with the modern Post Keynesian school in contrast assumes a procyclical markup. Kalecki (1965) 
and Goodwin (1967) adhered to the “Radical” theory long before the emergence of the Radical school, and it has 
gained other supporters since then.  
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Contents of paper: In this paper, I formulate just the financial instability mechanism in these earlier 

papers in a dynamical model with three state variables: b (financial risk-taking or borrowing), u (capacity 

utilization), and L (accumulated debt). Additionally, the Poisson model uses a time variable t, the 

endogenous arrival rate parameter λ, and an endogenous parameter in the distribution from which 

shocks are drawn. The resulting model accounts for endogenous instability but omits Minsky’s thwarting 

systems, such as “Big Government” and “Lender of Last Resort” (e.g., Minsky 1986, 13–67; Ferri and 

Minsky 1992; Dafermos 2018). Also, as in most “Minsky models,” distribution and inequality (e.g., Skott 

2012) are not separately modeled. The model can be expressed in terms of  

(1) three differential equations, 

(2) a compound stable-Poisson stochastic process, and the functions that give the endogenous 

values of the parameters of the process.  

Thus, this paper will present in a careful way the most basic part of the formalization of Minskyan 

instability initially suggested in Hannsgen (2012, 2013) and Hannsgen and Young-Taft (2015).  

Detailed organization of the remainder of the paper: Section II presents the deterministic dynamical 

system, along with analytical results in the form of symbolic expressions for the roots of the linear part 

of a simple version of the model. I show how this part of the model generates endogenous upward or 

downward instability. Section III presents the model used to generate stochastic jumps at an 

endogenous rate that increases with financial fragility. Section IV presents a more elegant statement of 

the model. Section V presents a model of nonlinear self-correcting forces that can bound the 

deterministic system. Section VI presents a more–SFC version of the model. This move forces the use of 

effects that we have set equal to zero in the simplified model of Section II and adds an additional effect. 

Computing the eigenvalues of the linear, deterministic part of this more-SFC system requires the use of 

a numerical example rather than analytical methods, though stability conditions are stated. Section VII is 

a conclusion that summarizes the methodology and results, suggests limitations of the present study, 

and argues that the model captures key elements of Minsky’s theory of financial instability. Section VIII 

is an appendix covering (a) computation of the analytical derivatives of the debt integrals for both 

models, (b) computation of the (meaningless) stationary equilibrium for the model of Section II, (c) 

computation of the eigenvalues, and (d) analytical stability conditions for the more-SFC model of Section 

VI.  

 

II. The Differential Equations in the Continuous-time Variables: b, u, L: 

Equilibrium and Qualitative Dynamics for a Simplified Version 

We seek a system that will contain three dynamically endogenous variables, b, u, and L. Our notation 

will leave dependence on time implicit.  

b: Let b be the rate of net accumulation of debt relative to the capital stock. This variable can 

presumably take on both negative and positive values.  

u: Let u equal capacity utilization, defined so that it takes on values between zero and one. That is, let 

𝑢 = 𝑌/𝜈𝐾 
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where Y is output per unit of time in physical units, K is the capital stock in physical units, and the 

parameter 𝜈 is defined as output per employed physical unit of capital per unit of time.  

L: Our measure of total systemic risk, L, given that the last crisis occurred at time t0 is generally 

𝐿 = ∫ 𝑓1(𝑏(𝑠)) 𝑑𝑠, 𝑓1
′ >  0 

𝑡

𝑡0

 

Generally, b adds to the stock of risky debt in some potentially nonlinear way through the function f1. 

For the sake of simplicity, we specialize to a simple linear specification for f1  

𝐿 = ∫ 𝑏(𝑠) 𝑑𝑠
𝑡

𝑡0
   (1) 

We will think of b and L as indexes expressed in relation to capital.  

Next, I posit a probability model of crisis in the form of a Poisson process, a stochastic process that 

jumps when an event occurs (Ross 1997, 235‒287; Walde 2011, 225–38). The parameter λ in the process 

will depend on L and u through an intensity function as follows 

𝜆 = 𝑓2(𝐿, 𝑢), 𝜕𝑓2/𝜕𝐿 > 0, 𝜕𝑓2/𝜕𝑢 < 0  

The use of endogenous λ means that this Poisson process is nonhomogeneous (Ross 1997, 277‒281). 

The variable λ is a latent measure of fragility that can rise over time, while allowing some of the effects 

of a boom in borrowing to occur with a delay. In neoclassical Schumpeterian endogenous growth theory, 

λ is sometimes an increasing function of labor devoted to research and development, yielding a model 

of the rate of innovation (Aghion and Howitt 1997, 53–83). 

For simplicity, we will assume that the effects of u are small enough to ignore, i.e., 

𝜕𝑓2

𝜕𝑢
= 0 

allowing accumulated risk L to be the sole variable determining probability of crisis.  

In the homogeneous type of Poisson process, the number of crises in an interval of time of length t is 

distributed as Poisson with mean λt, and the time between crises is distributed as an exponential 

random variable with mean 1/λ. The corresponding distributions for a nonhomogeneous Poisson 

process depend on a mean value function obtained by integrating over a particular time interval to 

obtain the probability of a crisis in the interval (Ross 1997, 277‒78). 

We assume that the rate of change of the addition to financial risk is increasing in capacity utilization u 

(an effect of general economic euphoria) and decreasing in accumulated risk L. Further, a function in 

which higher L reduces new financial risk-taking b may make sense.  For example, lenders may restrict 

lending as the private-sector debt burden rises because of concerns about default, a stock-flow 

consistent (Godley and Lavoie 2012) effect.  

𝑑𝑏

𝑑𝑡
= 𝛼𝑏0 + 𝛼𝑏𝑢𝑢 − 𝛼𝑏𝐿𝐿  (2) 

Next, we posit that capacity utilization u follows the law of motion 
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𝑑𝑢

𝑑𝑡
= 𝛼𝑢0 + 𝛼𝑢𝑏𝑏 + 𝛼𝑢𝑢𝑢 − 𝛼𝑢𝐿𝐿  (3)  

𝛼𝑢𝑢 < 1 

This variable is driven upward by borrowing connected with spending. We assume a direct own-effect 

for the variable u—upward motion is self-reinforcing.  

Differentiating the integral for L (eq. 1) by t, one obtains 

𝑑𝐿

𝑑𝑡
= 𝑏(𝑡)  (4) 

We then have a system made up of the ordinary differential equations (2), (3), and (4) in the variables b, 

u, and L.  

A previous use of a private debt function in a similar-sized dynamical macro model would be Chiarella, 

Flaschel, and Semmler (1999, 124). In that neoclassical model, debt accumulation is determined through 

a household intertemporal optimization process, while we will use the non-optimizing formulation 

above, in which u and L appear in an equation for db/dt.  

In addition, we can keep an initial condition from our integral equation that is lost in differentiation. 

𝐿𝑡0
= 𝐿0  (5) 

In matrix form, the system in b (net borrowing), u (capacity utilization), and L (debt) is: 

[

𝑑𝑏/𝑑𝑡
𝑑𝑢/𝑑𝑡
𝑑𝐿/𝑑𝑡

] = [
0 𝛼𝑏𝑢 −𝛼𝑏𝐿

𝛼𝑢𝑏 𝛼𝑢𝑢 −𝛼𝑢𝐿

1 0 0
] [

𝑏
𝑢
𝐿

] + [
𝛼𝑏0

𝛼𝑢0

0
]  (6) 

The matrix is nonsingular, so the mathematical equilibrium of this nonhomogeneous system exists and is 

unique. See part (b) of the appendix (Section VIII) for an analytical solution for the more-complicated 

model of Section VI. We discuss possible meaningful equilibria from the perspective of economics in 

more detail below. 

Feedback Loops: The 3 × 3 coefficient matrix in eq. (6) shows that the feedback loops in this system are: 

1) b, u dual self-reinforcing dynamics, e.g., 𝑏 ↑ → 𝑢 ↑↑ →  𝑏 ↑↑↑ 

2) u self-reinforcing dynamics: ↑ 𝑢 → 𝑢 ↑↑→ 𝑢 ↑↑↑ 

3) L, b self-correcting dynamics: 𝑏 > 0 → 𝐿 ↑ → 𝑏 ↓↓ 

4) L, u, b self-correcting dynamics: 𝑏 > 0 → 𝐿 ↑ → 𝑢 ↓↓→ 𝑏 ↓↓↓ 

Double up or down arrows indicate acceleration, while triple up or down arrows denote acceleration of 

rates of change.  

Stability Analysis: Eigenvalue analysis for the system in symbols (eq. 6) can begin with the 

corresponding homogeneous system obtained by omitting the vector of constants. The trace of the 

coefficient matrix is greater than zero, violating one of the three Routh-Hurwitz conditions for a system 

of this size (Gandolfo 1997, 251–52). Hence, this linear system is not stable.  
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It would be helpful to have explicit expressions for the eigenvalues. In the interest of computational 

simplicity, I tried assuming 𝛼𝑏𝐿= 0. A program to find the eigenvalues produced a very complicated set of 

expressions. I then tried making the additional simplifying assumption that 𝛼𝑢𝐿 = 0. These assumptions 

unfortunately remove the effects of past borrowing on current borrowing and on output via aggregate 

demand. In the resulting model, the only self-correcting force will be the downward jumps to be 

developed in the next section.  

We can think of the shock as a probabilistic stock-flow mechanism, in that it takes into account medium-

term impacts of the accumulation of financial risk. Moreover, we will take up a version with the omitted 

deterministic SFC effects in Section IV using a numerical example. Finally, in Section VII, we will find an 

analytical stability condition in symbols for a more-SFC model, though we will again refrain from 

reporting complicated and unhelpful eigenvalue expressions. 

The matrix of coefficients for the simplified model is 

[
0 𝛼𝑏𝑢 0

𝛼𝑢𝑏 𝛼𝑢𝑢 0
1 0 0

] 

Using this matrix, the revised system of equations is:  

[

𝑑𝑏/𝑑𝑡
𝑑𝑢/𝑑𝑡
𝑑𝐿/𝑑𝑡

] = [
0 𝛼𝑏𝑢 0

𝛼𝑢𝑏 𝛼𝑢𝑢 0
1 0 0

] [
𝑏
𝑢
𝐿

] + [
𝛼𝑏0

𝛼𝑢0

0
]  (6′) 

Feedback Loops in Simplified Model (eq. 6’): Setting debt feedback coefficients equal to zero as in eq. 

(6’) removes the third and fourth feedback loops in the list above. We replace those feedbacks with this 

one-way causal mechanism: 

• 𝑏 > 0 → 𝐿 ↑ 

Thus, all remaining feedbacks are positive. Also, these feedback mechanisms can work in the opposite 

direction, causing all variables to fall continuously. As we will see, depending on initial conditions, these 

feedbacks may not work in this self-reinforcing way in the short to medium run.  

Stability Analysis for the Simplified Model (eq. 6’): The column of zeros in the matrix in (6’) implies a 

zero root. In fact, MATLAB® computed the following three eigenvalues for the simplified coefficient 

matrix: 

        {0,
𝛼𝑢𝑢

2
+ (

√𝛼𝑢𝑢
2 +4𝛼𝑏𝑢𝛼𝑢𝑏

2
) ,

𝛼𝑢𝑢

2
− (

√𝛼𝑢𝑢
2 +4𝛼𝑏𝑢𝛼𝑢𝑏

2
) } 

See the part (c) of the Appendix (Section VIII) for the code and output.  

Moreover, an expression for stationary equilibrium in eq. (6’) indicates no unique solution, since for 

example, our equations do not restrict L. In fact, the zero root means that the solution for the simplified 

model will give a center subspace. (See, for example, Hirsch and Smale 1974, 109–143.)  

Looking at the homogeneous version of eq (6’), we find that borrowing b is zero at equilibrium. (Nonzero 

b implies dL/dt ≠ 0 in the third row.)  
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[

𝑑𝑏/𝑑𝑡
𝑑𝑢/𝑑𝑡
𝑑𝐿/𝑑𝑡

] = [
0 𝛼𝑏𝑢 0

𝛼𝑢𝑏 𝛼𝑢𝑢 0
1 0 0

] [
𝑏
𝑢
𝐿

]  (7) 

Furthermore, as we have seen above, equilibrium is not stable. This system will not approach 

equilibrium, nor is the latter Minskyan, as, with b = 0, it lacks a tendency toward financial fragility.  

From our theoretical perspective, we are more interested in a weaker equilibrium concept, allowing us 

to find parts of the state space in which normalized debt L rises over time. Formally, we would be 

interested in solutions to equation (7) with the following characteristics 

Equilibrium Concept (Minsky moving equilibrium): 
𝑑𝑏

𝑑𝑡
= 0; 

𝑑𝑢

𝑑𝑡
= 0; 

𝑑𝐿

𝑑𝑡
 >

0 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑒𝑞. 7) 

Applying this concept will yield a solution of the following form: 

𝑏 = 𝑏∗ > 0, 𝑢 =  𝑢∗ ∈ [0,1], 𝐿 =  𝐶𝑒𝑏𝑡  

I assume an initial condition of t = 0. Such a moving equilibrium will be a closer to a match to a real-

world economy in which the stock of risky debt has a tendency to rise relative to some normalizing 

variable—Minsky’s endogenous emergence of instability (e.g., 1977, 66‒67; 1986, 213). 

The stability of the moving equilibrium can be analyzed as follows. Suppose we transform to coordinates 

b, u, and Lτ= 𝐶. 𝑒𝑥𝑝(𝑏∗𝑡). We would then have a space which L was approximately motionless for b near 

the moving equilibrium. Looking at 2D dynamics, the coefficient matrix for the reduced system is: 

[
0 𝛼𝑏𝑢

𝛼𝑢𝑏 𝛼𝑢𝑢
] 

The trace is positive and the determinant negative, implying roots of opposite sign. The positive and 

negative roots imply unstable saddle-point-type dynamics in a b, u subsystem. The stable subspace in 

the reduced system is only one-dimensional, with the system ultimately pushing away from the moving 

Minsky equilibrium elsewhere. No tendency exists for the rates of borrowing or capacity utilization to 

stabilize. The phase diagram (made by PHASER 3.0) below shows b on the abscissa and u on the 

ordinate.  

CONTINUED BELOW 
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FIGURE 1: SCHEMATIC PHASE DIAGRAM FOR THE b, u SUBSYSTEM

 

To ascertain the qualitative dynamics, I have used a system with ones in the nonzero entries of the 

coefficient matrix and zeroes for the constants. The 𝑏̇ = 0 locus is horizontal, while the 𝑢̇ = 0  locus is 

downward sloping. Given positive equilibrium b, the point of intersection of the two loci is a Minsky 

moving equilibrium, since L—normalized debt—is increasing there, while b and u—borrowing and 

capacity utilization—are constant. The 2D figure shows that regardless of initial conditions, b and u 

eventually rise or fall along any trajectory, except on the usual measure-zero stable arms of the saddle. 

We return to untransformed 3D space. L once again rises continuously. The zero root implies a 2D 

center subspace, and there exists a 2D stable subspace, corresponding to the 1D stable arm of the 2D 

system that we just considered (Hirsch and Smale 1974, 109–143). The 2D center subspace partitions 

the meaningful (3D) state space into invariant subspaces characterized by eventual upward and 

downward instability, respectively. The constants in the equations obviously matter for the relative 

volume of the upwardly and downwardly stable regions.  

Summary: We now possess a simple system that in the long run generates increasing borrowing and 

capacity utilization or falling values of both of those variables, with no tendency to converge to a steady 

state. At the least, borrowing or capacity utilization are moving away from the moving equilibrium. The 

aftermath of a crisis brings a gradual, endogenous acceleration of risky borrowing. In Section III, we will 

add stochastic jumps that represent the next element from Minsky’s theory—crises in which optimism, 

financial risk-taking, and outstanding debt suddenly collapse. 
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III. The Crisis-Shock: A Stochastic Discrete Jump on Crisis Dates 

We next seek to model how a sudden change in financial conventions or expectations can drive the 

emergence of crisis, interrupting the self-reinforcing cycle of increasing confidence and capacity 

utilization. It may be that all know debt ratios are going to eventually cause a crisis, but because no one 

knows the timing of this future event, debt can continue to increase—a financial scenario familiar to 

readers of Keynes (1936) and Minsky (e.g., 1977, 1986).   

FIGURE 2: POISSON ARRIVAL-RATE PARAMETER λ AS A FUNCTION OF L, NORMALIZED LIABILITIES 

 

We make the parameter governing the frequency of crises endogenous as follows 

𝜆 = 𝑓2(𝐿) 

where f is a logistic function. With this specification, f has a lower bound at zero and a positive upper 

bound 𝜆̅ . In this formulation, λ, the frequency of crises reflects the stock of debt, a form of stock-flow 

consistency (Godley and Cripps 1983; Godley and Lavoie 2012) that we can call probabilistic stock-flow 

consistency. 

Suppose an arrival date occurs at time t0 in a realization of the Poisson process driven by λ. A shock εT > 

0 is drawn from a distribution, F. We use a non-Gaussian stable distribution. These distributions and 

their properties were discovered by Paul Lévy in the 1930s and are the subject of a book by Nolan 

(2020). They were applied in physics and financial economics as part of the complexity revolution in the 

late 20th Century, with the leading scientific figure being Benoît Mandelbrot, but were suppressed in 

mainstream macroeconomics beginning in the 1970s (Mirowski 1990; Sent 1998). This class of 

distributions generalizes the normal distribution to allow for heavy tails and skew. In one 

parameterization, a stable distribution possesses the parameters 

                                                                                                                                       𝛼, 𝛽, 𝛿, 𝛾 
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with restrictions 0 < α ≤ 2, ‒1 ≤ β ≤ 1, and γ > 0. We will choose a parameter vector satisfying 1 < α < 2 

and β = 1.  See the example probability density function below.        

FIGURE 3: PDF OF TOTALLY SKEWED, INFINITE-VARIANCE STABLE DISTRIBUTION 

  

The choice of α < 2 ensures we have an infinite-variance case rather than the normal distribution. On 

the other hand, our assumption that α > 1 ensures that the mean exists (is finite). Finally, with β = 1, 

such a distribution is totally skewed to the right, meaning that its support is bounded to the left (Fofack 

and Nolan 1999). A stable distribution of this type has asymptotic power law behavior as 𝜀 → ∞.   Our 

framework would also allow us to make the thickness of the tail a function of the business cycle variable 

u or accumulated risk L or both, so that 

𝛼 = 𝑓3(𝑢, 𝐿) 

FIGURE 4: STABLE TAIL-THICKNESS PARAMETER α AS A FUNCTION OF L, NORMALIZED LIABILTIES 
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We want to specify a way that our heavy-tailed random variate ε changes the variables in the model, b, 

u, and L. Suppose we are looking at the trajectory of a given simulation with initial conditions b0, u0, L0. A 

shock causes a discontinuous jump at time T of impact 

Δ [
𝑏
𝑢
𝐿

] = − [

𝑏 ∗ (1 − 𝑒𝑥𝑝 (−𝜀−1))

𝑢 ∗ 𝑘1 ∗ (1 − 𝑒𝑥𝑝 (−𝑘1𝜀−1))

𝐿 ∗ (1 − 𝑒𝑥𝑝 (−𝑘2𝜀−1))

] 

where k1 and k2 are constants. This specification implies that a crisis causes instantaneous downward 

jumps in borrowing b, capacity utilization u, and debt L. Of course, Minsky (1977, 1986) held that crises 

invariably led to a temporary return of financial conservatism, as well write-downs of risky debt.  

We have constructed the impacts to avoid situations in which the shocks carry one or more state 

variables beyond the intervals in which they have economic meaning. The continuous 3D system of the 

previous section restarts at t = T with new initial conditions, resulting in a right-continuous trajectory at 

that point. If the Poisson process generates no event in some interval [𝑡0, 𝑡1], these discrete jump 

variables remain equal to zero. The mixture of continuity and jumps characterizes what is known as a 

cádlág process (Walde 2011, 261).  

We show how to express the complete model in an elegant way in the next section. 

Summary: We now have a combination of a continuous system in three variables b, u, and L; the 

discrete jumps in the same variables Δb, Δu, and ΔL; and the endogenous parameters λ and α. In the 

region characterized by upward movement in all variables, the jumps create an effect of irregular cycles. 

A large enough jump would carry the economy into the region that is characterized by falling values of 

all variables—a catastrophic event leading to irreversible change, after which further jumps only hasten 

downward motion in state space. In the regions in which b and u move in opposite directions, 

catastrophic drops can also occur, leading abruptly to continuous downward motion in b and u.  

 

IV. A More Elegant Statement: Three D.E.s and the Stable-Poisson Process 

Now that we have set forth the model, we can find a more mathematically elegant formulation.  

We will make use of the integral representation for the compound stable-Poisson stochastic process (eq. 

8) of the previous section  

𝑞(𝑡) − 𝑞(𝑡0) = ∫ 𝑝(𝑠) 𝑑𝑠
𝑡

𝑡0

 

The increment dq of this process equals zero when no crisis occurs, while 

𝑑𝑞 ~ 𝐹(𝑓3(𝑢, 𝐿),1, 𝛿, 𝛾) 

at jump points, where F is a totally skewed, infinite-variance stable distributione, and f3 gives the value 

of the tail-thickness parameter α, as described in the previous section. 
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Summary: Adding the new component to (7), the model can be stated in the form of three differential 

equations in the three endogenous variables and the increment of the stochastic process, as explained 

in Walde (2011, 236)  

[
𝑑𝑏
𝑑𝑢
𝑑𝐿

] = [𝑑𝑡 𝑑𝑡 𝑑𝑡] [
0 𝛼𝑏𝑢 0

𝛼𝑢𝑏 𝛼𝑢𝑢 0
1 0 0

] [
𝑏
𝑢
𝐿

] − [

𝑏 ∗ (1 − exp(−𝑑𝑞−1))

𝑢 ∗ 𝑘1 ∗ (1 − exp(−𝑘1𝑑𝑞−1))

𝑏 ∗ (1 − exp(−𝑘2𝑑𝑞−1))

]  (8) 

together with the functions f2 and f3 giving the values of λ and α and the remaining parameters of the 

stable distribution F, γ and δ. Once initial conditions are known, a constant vector can be added. 

 

V. Possible Nonlinearities and Boundedness 

We comment now on some properties of the state space of our continuous-time model that we can 

develop by arguing on for the plausibility of a positively invariant, open, bounded region of this space. 

We are led to impose bounds by the economics of the system. These bounds become important if the 

system is in a boom phase with rising b, u, and L and by luck avoids crisis-jumps, which usually mark the 

end of a boom. Formally, we could augment system (8) with functions that ensure that behavior is 

bounded as the economy approaches limits of plausible or defined behavior (Flaschel, Franke, and 

Semmler 1999, 86‒87).  

We then consider the nonlinear system 

[
𝑑𝑏
𝑑𝑢
𝑑𝐿

] = [𝑑𝑡 𝑑𝑡 𝑑𝑡] [
0 𝛼𝑏𝑢 0

𝛼𝑢𝑏 𝛼𝑢𝑢 0
1 0 0

] [
𝑏
𝑢
𝐿

] − [

𝑏 ∗ (1 − exp(−𝑑𝑞−1))

𝑢 ∗ 𝑘1 ∗ (1 − exp(−𝑘1𝑑𝑞−1))

𝑏 ∗ (1 − exp(−𝑘2𝑑𝑞−1))

] + 𝒈(𝑏, 𝑢, 𝐿)  (9) 

where we have simply added the term 

𝒈(𝑏, 𝑢, 𝐿) = [

𝑔1(𝑏, 𝑢, 𝐿)

𝑔2(𝑏, 𝑢, 𝐿)

𝑔3(𝑏, 𝑢, 𝐿)
] , 𝑤ℎ𝑒𝑟𝑒 𝑔 = [

0
0
0

] 𝑖𝑛 𝑎 𝑟𝑒𝑔𝑖𝑜𝑛 𝑛𝑒𝑎𝑟 𝑒𝑞𝑢𝑙𝑖𝑏𝑟𝑖𝑢𝑚, 𝑎𝑛𝑑 
𝜕𝑔𝑖

𝜕𝑏
,

𝜕𝑔𝑖

𝜕𝑢
,

𝜕𝑔𝑖

𝜕𝐿
≤ 0, 𝑖 =

1, 2, 3  

The added term pushes the economy away from the boundaries as b, u, or L reach the extremes of the 

economically meaningful state space. These nonlinear feedbacks correct the extremely unstable 

behavior of the deterministic part of our model, in which no negative feedback loops exist even for very 

high or low values of capacity utilization, borrowing, or loans. This need becomes relevant in “lucky” 

realizations, in which a large amount of time elapses between crises, or jumps are small, or both.  

Additional thoughts about reasons to expect inward-pushing forces that push trajectories away from the 

outer boundary might include: (1) lenders are likely to impose limits on b in practice since net 

accumulation of debt makes no sense once we are substantially above or below the range of observed 

values, given an existing institutional framework, including prevailing lending practices; (2) typical 

Steindlian forces are likely to bound u as we reach extreme levels of that variable. Namely, extremes of 

u are corrected by stabilizing changes in investment, pushing the economy toward moderate levels of u 

(Flaschel, Franke, and Semmler 1999); (3) for high levels of L, movement toward greater u and b may be 
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eventually reversed, owing to Fisher-Kalecki-Keynes-Tobin debt-burden effects, which, as explained 

above, we have assumed away in constructing our formal analysis of the roots of this system.  

Therefore, L is bounded in part by changes in the behavior of b and u, which tend to reinforce one 

another, setting up a reverse dynamic and leading to falling L—actual declines in net indebtedness 

through credit rationing or borrower efforts to repay or both. Falling L behavior might occur in part 

through the writing off of bad debt rather than declines in lending minus repayments. Write-offs of the 

stock of debt would be modelled as self-correcting, nonlinear own-effects in the equation for L at very 

high values of this variable.6 We introduce some negative feedback effects in the linear portion of the 

system in the next section.  

VI. A Minsky Model with Two Deterministic Stock Effects: An Unstable 

Case and General Stability Conditions 

We will next suggest how to incorporate some deterministic SFC effects into the model. This will require 

dropping the simplifying conditions of Section II through V. While we now lose our earlier tractable 

symbolic expressions for the roots of the model, we can state a set of necessary and sufficient stability 

conditions. In fact, in part (d) of the Appendix (Section VIII), I show that generally the linear part of the 

new system is stable under a set of three necessary and sufficient conditions.  

Intuitively, our more-SFC system will not under all conditions have self-reinforcing debt-output dynamics 

that dominate until a crisis occurs. Stability of the linear, deterministic part will depend on the 

parameter values. The system will be less inherently unstable because high normalized debt levels L 

slow the rates of increase of borrowing b and capacity utilization u.  

For this simple model of Minsky’s theory of financial instability, it seems reasonable to select a case for 

which local stability is provided only by financial crises that abruptly bring booms to an end. Hence, we 

will compute the roots for a numerical example in which the linear part of the system is not stable, as in 

the simplified model considered above.  As before, the ad hoc nonlinearities introduced in Section V will 

bound the system globally, preventing normalized debt and other variables from attaining values where 

they lack economic meaning or plausibility, regardless of the realizations of the Poisson process. 

The Revised Model: We now define financial variables in a more tangible way. Let b be new borrowing 

and L be accumulated debt. Let each variable be the ratio of its nominal counterpart to the real capital 

stock K times the fixed goods price p*. Using the variables B for nominal borrowing and 𝐿{𝑁} for the 

nominal stock of debt:  

𝑏 =
𝐵

𝐾𝑝
 

𝐿 = 𝐿{𝑁}/𝐾𝑝 

𝑝 = 𝑝∗ 

 
6 An invariant region generally contains limit sets, including an equilibrium. In principle, the qualitative possibilities 
for such a region in three dimensions are known to be numerous and possibly complex, including chaotic 
attractors, as well as limit cycles.  
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We assume that we can ignore capital gains on financial assets. Using a revised f1, the definition of the 

stock variable L becomes 

𝐿 = ∫ 𝑏 − 𝜌𝐿 𝑑𝑠
𝑡

𝑡0

  (1′) 

Here, I use 0 < ρ < 1 for the repayment rate, and b now represents gross borrowing relative to capital. 

The new differential equation for L is 

𝑑𝐿/𝑑𝑡 = 𝑏 − 𝜌𝐿 (4′) 

See part (a) of the Appendix (Section VIII) for the computation of this time derivative. 

Let i equal the interest rate. We can now add an “SFC” term in L for the debt-service burden to the 

equations for b 

𝑑𝑏

𝑑𝑡
= 𝛼𝑏0 + 𝛼𝑏𝑢𝑢 − 𝛼𝑏𝐿(𝑖 + 𝜌)𝐿  (2′) 

and u 

𝑑𝑢

𝑑𝑡
= 𝛼𝑢0 + 𝛼𝑢𝑏𝑏 + 𝛼𝑢𝑢𝑢 − 𝛼𝑢𝐿(𝑖 + 𝜌)𝐿  (3′) 

Use of such a term is justified in part by cash-flow effects for firms and households that do not have 

ready access to credit markets and cannot easily increase mark-ups. The model still lacks full SFC 

accounting, which would require a much larger model and a simulation methodology best suited for the 

use of difference equations. 

Our coefficient matrix for the linear terms in the system made up of (2’), (3’), and (4’) is now 

[

0 𝛼𝑏𝑢 −𝛼𝑏𝐿(𝑖 + 𝜌)
𝛼𝑢𝑏 𝛼𝑢𝑢 −𝛼𝑢𝐿(𝑖 + 𝜌)

1 0 −𝜌
] 

Right away we see that the system will be unstable for some values of the parameters. For a given value 

of the (3, 3) element, we can make the trace positive by making 𝛼𝑢𝑢 sufficiently large.  The equilibrium 

of the linear system is stated in Part (b) of Section VIII. Part (d) of Section VIII contains formal stability 

conditions. 

New Feedback Loops: We have now returned to the four feedback loops of the original (nonsimplified) 

analytical model, plus one:  

(1) higher debt repayment and interest payments again lead to lower borrowing and capacity 

utilization as in the model in eq. (6).  

(2) The added effect is an own-effect of debt on increases in debt through an interest burden effect 

in the (3, 3) element of the coefficient matrix. 

𝐿 ↑→ 𝐿 ↑↑→ 𝑏, 𝑢 ↓↓ 
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We have stated the directions of the effects for the case of upward changes in L. Of course, downward 

changes in L lead to effects in the opposite direction.  

Numerical Example: For our numerical example, we will try the following coefficient matrix 

[
0 . 8 −.15
. 8 . 9 −.1
1 0 −.1

] 

Here I have used 𝛼𝑏𝐿 = .5, 𝛼𝑢𝐿 =
2

15
, 𝑖 = .2, 𝜌 = .1.  The rest of the parameter values are obvious. 

Results for Numerical Example: MATLAB® computed the following eigenvalues: 1.3114, –

0.2557+0.1592i,  –0.2557–0.1592i . Since at least one root has positive real part, the system is unstable. 

Since two of the roots are a complex conjugate pair, the linear part of this system is characterized in part 

by spiraling motion (rotation). As before, our nonlinear ad hoc addition can bound the deterministic 

system. Finally, as in the less-SFC, analytically tractable example, the stochastic stable-Poisson jump 

model will generate downward jumps in the variables at an endogenous rate.  

Summary: The use of a more-complete model with SFC features illustrates the possibility of a different 

type of instability in the linear, deterministic part of the system. The irregular, repeated stochastic jumps 

tame upward instability to some extent. The imposed nonlinear, deterministic bounds (Section V) also 

limit trajectories in any case. For some parts of the parameter space, the revised linear system is stable. 

(See Section VIII (d).) As in the papers by, e.g., Dutt (2006) (see Section I), deterministic debt feedback 

seems to limit the scope for modeling Minskyan upward instability—the endogenous emergence of 

financial fragility. 

 

VII. Conclusion: The Simplified-Analytical and Stock-Flow Models, This 

Paper’s Findings, and How All Correspond to Minsky’s Theory 

The Model: Summing up the model itself, the general model in symbols has three variables: (1) 

normalized flow financial behavior, b; (2) a demand-driven capacity utilization variable, u; and (3) 

accumulated financial risk, L. We posited a system of three linear differential equations in these 

variables. The linear behavioral equations embody self-reinforcing dynamics in b and u, representing 

endogenous upward and downward instability, as well as a mechanical relationship between b and L, in 

which L was the integral of some function of b. To generate jumps whose probability varied with 

financial fragility, we added (1) a Poisson process with an arrival rate λ that was a function of L and (2) a 

shock with an asymmetric, non-Gaussian, stable distribution whose tail-heaviness parameter α was a 

function of L. Finally, this narrative demonstrated how to augment the system with behaviorally 

motivated nonlinear terms in each of the equations. These negative-feedback terms ensure the global 

boundedness of the deterministic, continuous-time system in the absence of Poisson jumps. These 

nonlinear terms were assumed to equal zero toward the interior of the economically meaningful state 

space.  

Methodology: In this paper, we have considered two approaches to finding the qualitative dynamics of 

the model. First, we considered a clearly non-SFC analytical model. We sought to compute the roots of 

the system. To obtain a more analytically tractable case in symbols, we simplified by eliminating two 
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posited effects in the linear part of the model, setting two coefficients equal to zero. Second, we 

considered a closely related model with additional SFC, behavioral effects. This model assumed constant 

repayment and interest rates for private-sector debt and allowed total debt-service payments to have 

negative feedback effects on the rates of change of b and u. 

Results: We analytically computed expressions for the roots of a simplified version of the linear, 

deterministic part of the model. We found that this part of the model had real roots of opposite sign 

along with a zero root.  The state space is made up of a two-dimensional invariant center manifold, a 

two-dimensional stable manifold, and saddle-point-unstable, three-dimensional regions. A phase 

diagram illustrated the saddle-point dynamics of b and u in a system transformed so that L remained 

approximately constant. 

Given these dynamics, particular solutions will eventually generate upward or downward drift in all 

variables, leading to a monotonically increasing endogenous arrival rate of crisis. We called the upwardly 

unstable case a Minsky moving equilibrium. Also, owing to endogenous α, the right tail in the stable 

distribution from which jumps are drawn becomes heavier. This movement increases the probability 

that the next downward jump will be an extreme event.  

The paper next considered the possibility of analyzing a more-SFC version of the same model. In this 

case we add interest payments entailed by the stock of debt. All stocks and flows become ratios to the 

(constant price times the) capital stock. We limit debt effects to effects of repayment and interest 

commitments, rather than making them unrestricted multiples of the debt variable. In this model the 

normalized stock of debt L provides negative feedback in the behavioral equations for b and u via these 

flow commitments. Our conclusions were slightly modified. Specifically, the linear part of the new 

system was stable for some parameter values. For a specific unstable case, the linear system in b, u, and 

L was characterized by some rotation, as evidenced by a pair of complex roots. The zero root had 

disappeared.  

Limitations of this Study: Throughout, we left out many factors in order to reach a minimal model of 

Minsky’s idea in three state variables. We have neglected possibly endogenous labor supply and 

productivity growth. We have not modeled public or external-sector behavior. We have assumed that 

wages, prices, interest rates and repayment rates were constant. We have included only one type of 

generic private financial liability, neglecting for example firm equity. We have not looked in detail at the 

sources of demand for the products of the private sector. We have not modeled the net income of any 

sector or group of households, including, for example, groups that are especially vulnerable to predatory 

lending. We have not considered intrahousehold distribution or behavior. We have not modeled the 

capital stock, but instead left it as an implicit normalizing variable in u and a factor in the denominators 

of b and L. We have not considered markets for financial assets. Finally, we have not estimated the 

crisis-probability-and-magnitude model. 

The Model of this paper and Minsky’s Theory of Financial lnstability (e.g., Minsky 1977, 1986). The key 

properties of the economy and Minsky’s theory captured by this model are (1) endogenous upward 

instability of normalized financial and goods flows, as well as stocks representing financial risk; (2) 

implications of financial flows for financial liabilities that are intermediated by a rising arrival rate λ of 

jumps that instantaneously bring (1) reduced financial obligations L, (2) lower capacity utilization u, and 

(3) more-conservative (lower) borrowing b. These reductions set the stage for another financial-and-

capacity-utilization boom. We have called the endogenous effects on λ of accumulated obligations L 
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probabilistic stock-flow consistency. Perhaps most notably, of the key elements in Minsky’s model of 

financial instability (e.g., Minsky 1986), this paper has omitted effects of countercyclical government 

policies that help to restore and sustain renewed growth and sometimes inflation. The paper has sought 

to rigorously and carefully state a Poisson-Minsky model in a relatively simple setting to lay compactly 

the groundwork for more elaborate applications. 

 

VIII. Appendix 

a. Computing the time derivative of L  

To compute the differential equation for L as in Section II, we start with this equation 

𝐿 = ∫ 𝑏 𝑑𝑠
𝑡

𝑡0

  (1) 

and differentiate w.r.t. the upper limit of integration   (2) 

For the SFC model of Section VI, we used the debt integral 

𝐿 = ∫ 𝑏 − 𝜌𝐿 𝑑𝑠
𝑡

𝑡0

  (1′) 

In this case, the differential equation for L turns out to be 

𝐿̇ = 𝑏 − 𝜌𝐿 

b. The Stationary Equilibrium 

We used the following MATLAB® program to compute an analytical solution for a stationary equilibrium 

of the model of Section 7.  

syms a c d a_b0 a_u0 a_bL a_uL b u L ir rho solb solu solL; 

eqns = [0 == a*u - a_bL*(ir+rho)*L + a_b0, 0 == c*b + d*u - a_uL*(ir+rho)*L + a_u0, 0 == b - rho*L]; 

vars = [b u L]; 

[solb, solu, solL] = solve(eqns, vars) 

MATLAB® yielded the following solution for the three variables b, u, and L respectively. 

>> Minimal_MInsky_Model_reduced_equil_corr 

solb = -(rho*(a*a_u0 - a_b0*d))/(a_bL*d*ir - a*a_uL*ir - a*a_uL*rho + a*c*rho + a_bL*d*rho) 

solu = -(a_bL*a_u0*ir - a_b0*a_uL*ir - a_b0*a_uL*rho + a_bL*a_u0*rho + a_b0*c*rho)/(a_bL*d*ir - 

a*a_uL*ir - a*a_uL*rho + a*c*rho + a_bL*d*rho) 

 solL =-(a*a_u0 - a_b0*d)/(a_bL*d*ir - a*a_uL*ir - a*a_uL*rho + a*c*rho + a_bL*d*rho) 
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As the stationary equilibrium is not stable or economically meaningful (see Section II), we have included 

this calculation here only for the sake of completeness. We will omit a similar computation for the 

revised model presented in Section VI.  

c. Computing the roots of the simplified system in symbols 

To obtain the eigenvalues for the simplified model, I used the following program in MATLAB® R2018a 

with Symbolic Toolbox, which I mentioned in Section II.  

syms a b c d; 

J2 = [0 a 0; c d 0; 1,0,0]; 

eigenvreduc = eig(J2) 

The program generated the following output: 

eigenvreduc = 

  

                           0 

 d/2 - (d^2 + 4*a*c)^(1/2)/2 

 d/2 + (d^2 + 4*a*c)^(1/2)/2 

 

d. Stability conditions for the more-SFC model of Section VI 

In Section VI, we use a numerical example that is unstable, with a pair of complex roots. We can find 

that adding terms that increase SFC feedbacks from private-sector debt not surprisingly bring in the 

possibility of a stable linear system. In fact, the system is stable under a set of three conditions based on 

conditions on the coefficients of the characteristic polynomial, which is of order three.  

The author used the following MATLAB® program with a symbolic math toolbox: 

syms a_bu a_ub a_uL a_uu a_bL iplusrho rho; 

Jsfc = [0 a_bu -a_bL*iplusrho; a_ub a_uu -a_uL*iplusrho; 1 0 -rho]; 

charpolysfc = charpoly(Jsfc) 

The package reported coefficients for a normalized polynomial as follows.  

a0 = 1  

a1 =rho - a_uu 

a2 =  a_bL*iplusrho - a_bu*a_ub - a_uu*rhoa3 =  a_bu*a_uL*iplusrho - a_bL*a_uu*iplusrho - 

a_bu*a_ub*rho 
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From Gandolfo (1997, 221), a set of necessary and sufficient conditions for the real parts of all roots to 

be negative and hence for the system to be stable, given that one has normalized the characteristic 

polynomial so that a0 = 1, as in the above: 

(1) a1 > 0 

(2) a3 > 0  

(3) a1a2 – a3 > 0 

Starting with any set of parameters for which the stability conditions are met, one can change them so 

that the system is unstable. For example, one could a_uu large enough that a1 = rho - a_uu < 0, resulting 

in a failure to meet condition (1). We know that ρ < 1, while a_uu depends on the usual considerations 

related to the conditions for Keynes-Kaldor-Kalecki output-adjustment stability.   

The numerical example in Section VI illustrates the exact computation of eigenvalues for a model with 

such feedbacks. 
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