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ABSTRACT 

 

This study empirically investigates the relationship between labor productivity (LP), average real wage 

(RW), and employment (EMP). The paper's main goal is to provide a test of competing theories of growth 

and income distribution. Standard theory predicts that real wages should increase following increases in 

labor productivity. Alternative theories and efficiency wage theories suggest that it is the distribution that 

causes changes in labor productivity. Theory delivers ambiguous predictions regarding the ultimate effects 

on employment, which can be either negative if factor substitution prevails or positive if higher wages and 

higher output per worker generate additional aggregate demand and, therefore, employment. I study a panel 

of 25 OECD economies over 1960-2019, using several approaches: 1) ECM, DOLS, FMOLS, and ARDL 

regressions with exogenous and endogenous variables, and 2) a VECM exercise as a robustness check. 

First, there is a long-run relationship between these variables when LP and RW are considered dependent 

variables. Second, EMP cannot be explained statistically by LP and RW in the long run: it is weakly 

exogenous, implying that OECD economies as a group have been, on average labor-constrained in the last 

six decades. Third, I find a positive two-way causality between LP and RW in both the long and short run, 

supporting the induced technical change, efficiency wages, and bargaining theories over the neoclassical 

theory. Fourth, concerning the LP-EMP nexus, in the long run, the results show a negative association, 

statistically significant for the single-equation estimates from EMP to LP in most specifications. Fifth, there 

is a positive effect running from EMP to RW in most specifications, statistically significant only in the 

single-equation. Sixth, both LP positively affects EMP, and RW negatively impacts EMP in the short run.  
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1. INTRODUCTION 

This paper provides an empirical investigation of the relationship between labor productivity (LP), real 

wages (RW), and employment (EMP) in a panel of OCED countries. The ultimate goal is to evaluate 

competing theories of growth and distribution. According to classical political economy -especially the 

classical-Marxian theory of induced technical change (Foley et al., 2019, Ch. 7)- as well as post-Keynesian 

economics, changes in RW should cause LP to increase. Rising RW reduces profitability, inducing profit-

seeking capitalist firms to invest in labor-saving technical changes to decrease the share of wages in total 

costs. On the other hand, Neoclassical theory predicts that LP increases should result in increasing RW, 

given that wages are equal to the marginal product of labor. Accordingly, productivity-enhancing 

innovations should reverberate into higher wages. 

An additional relevant question addressed in this paper is whether increases in RW or LP growth occur at 

the expenses of EMP or not. With a downward-sloping labor demand curve, the effect of exogenous 

increases in RW should be negative, at least in the short run. But if LP eventually keeps up with rising RW 

so that unit labor costs do not change, the effect on employment should vanish in the long run. On the other 

hand, labor-saving technical change that increases LP may either generate job destruction or job creation in 

the long run. It is plausible to expect job destruction temporarily, but labor reallocation may offset the initial 

adverse effects of rising LP on employment. 

Therefore, the goal of this paper is to evaluate the relationship between these three economic variables 

empirically.  By using panel time-series methods, this paper looks at both short and long run effects.  

Specifically, I carry out an empirical analysis in two scenarios: 1) several single-equation approaches where 

decisions about identification are based on theoretical priors about what are the exogenous and endogenous 

variables, and 2) a multi-equation approach that assumes an entirely endogenous system. 

The data for the OECD economies in the sample -countries at similar stages of development and therefore 

roughly comparable- appear to support a two-way long-run relationship between RW and LP.  As for EMP 

effects, I find evidence that RW increases negatively affect EMP in the short run, leading to job destruction. 

Still, in the long run, EMP returns to its trend, signaling that labor reallocation eventually offsets the initial 

negative impact of rising real wages. In addition, LP positively impacts EMP in the short run, meaning that 

the output effect due to the additional aggregate demand prevails the factor substitution effect; but 

eventually, its impact dies out.  However, EMP is weakly exogenous in this three-variable system, and other 

factors mainly explain its long run trajectory, supporting evidence that OECD countries have been labor-

constrained -with weakly exogenous employment to population ratio in balanced growth- as a group for the 

period under analysis. 

Among the frameworks that explain RW's influence on LP in the context of the efficiency wages theory, 

the first one is the shirking model. (Shapiro and Stiglitz, 1984; Copeland, 1989; Cappelli and Chauving, 

1991; Brecher, 1992; Barmbay, Sessions, and Treble, 1994; Bulkley and Myles, 1996; Spencer, 2002; 

Alexopoulos, 2003; D'Orlando, 2004; Ross and Zenou, 2008). This model illustrates how the combination 

of RW and work requirements offered by firms gives workers a utility level that workers compare to their 

opportunity costs.  Then, based on that comparison, workers will decide to shirk or increase their effort, 

impacting LP levels.  The second type of model that describes the efficiency wages theory is the fairness 

model. (Akerlof, 1982; Yellen, 1984; Akerlof and Yellen, 1988; Akerlof and Yellen, 1990; Fehr and 

Kirchsteiger, 1994; Agell and Lundborg, 1995, Fehr, Gachter, and Kirchsteiger, 1996; Agell and Lundborg 
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2003; Snowdon and Vane, 2005).  This model appeals to sociological causes, arguing that RW below the 

market-clearing wage -'unfair' RW- demotivates workers making them decline their LP, so firms will tend 

to push wages up to a 'fair' level -or higher- to boost output per worker.  

The third framework used to address the efficiency wages theory is the adverse selection model. (Guasch 

and Weiss, 1980; Weiss, 1980; Greenwald, 1986; Wakita, 1992; Clemenz, 1995; Araujo and Sachsida, 

2010).  This model considers that employees are heterogeneous in their skill levels and know their 

capabilities, but firms are imperfectly informed about them. Firms may offer higher wages since firms 

desire to attract better workers and avoid potential issues due to this asymmetric information.  The fourth 

one is the turnover model. (Phelps, 1968; Stiglitz, 1974; Schlicht, 1978; Salop, 1979; Leonard, 1987; 

Campbell, 1993; Bentley Macleod and Malcomson, 1995, Toulemonde, 2003; Yang, 2008).  In this model, 

replacing workers carries high costs for firms: time-consuming searching processes, recruitment, training 

costs, and vacant job costs.  Therefore, firms pay higher wages to reduce the workers' motivation to leave 

the job, reducing labor turnover costs. 

In heterodox theories, economists working in the classical-Marxian and post-Keynesian traditions have 

explored the implications of induced technical change for the relationship between income distribution and 

labor productivity. The idea of induced technical change originated with Hicks (1932), according to whom 

firms would have incentives to save on a production factor if their share in the firms’ cost increased. 

Kennedy (1964) formalized this idea and showed that a rising share of wages in a firm’s cost would result 

in a stronger bias toward labor. Recently, induced technical change has witnessed a comeback: Foley (2003), 

Julius (2005), Tavani (2012, 2013), Zamparelli (2015) are some examples of recent literature in this vein. 

The opposite causality from LP to RW has also been explored using different approaches, such as the 

marginal productivity theory (Clark, 1886; Wicksteed, 1894; Stein, 1958; Mazumdar, 1959; Ostroy, 1984; 

Booth and Frank, 1999).  This theory argues that a firm is willing to pay a worker salary according to what 

the worker adds to its revenues.  Thus, a firm will hire workers up to the point where marginal revenue 

equals the wage rate.  RW determination is also explained in the same vein in a bargaining theory 

framework (Davidson, 1898; Svejnar, 1986; Cramton and Tracy, 1992; Cahuc, Postel-Vinay, and Robin, 

2006). The bargaining theory affirms that the parties' bargaining power determines RW and working 

conditions to the agreement.  In turn, the workers' bargaining strength depends on several factors, such as 

the worker's productivity, the project's profitability, future economic perspectives, the worker's fallback 

position, or minimum wage legislation. 

With that being said, my conclusion is that the bidirectional causation between RW and LP provides 

evidence of induced technical change, efficiency wages, and bargaining theories in the OECD economies 

in the last six decades while rejecting the marginal productivity theory in this set of countries as a group. 

The positive impact from RW to LP would indicate that rising labor costs have incentivized these economies 

to incorporate labor-saving technological innovation, which has raised output per unit of employment.  An 

additional explanation is the efficiency wages theory.  For its part, the positive effect from LP to RW is 

required to maintain a constant labor share in balanced growth, therefore matching the Kaldor (1955) 

stylized facts. It also supports the bargaining theory, which can coexist with the inclusion of induced 

technical innovations (Tavani, 2012, 2013) and efficiency wages theory. 

My empirical results do not appear to back the marginal productivity theory, where unidirectional causality 

from LP to RW is enough to ensure that the wage share remains constant in the long run. It is an essential 
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result of this paper. Suppose one takes the neoclassical growth model seriously. In that case, labor 

productivity will grow exogenously to maintain a constant wage share in the long run, and real wages must 

grow at the same rate. Therefore, the theory predicts unidirectional causality between LP and RW. 

Viceversa, classical-Marxian induced bias in technical change indicates that increases in a measure of 

distribution (real wages in this case) should induce firms to adopt more labor-saving technologies, thus 

increasing labor productivity.  However, for the wage share to remain constant in the long run, real wages 

must grow in line with labor productivity. The empirical results lend support for the induced technical 

change hypothesis over the neoclassical theory. Importantly, efficiency wages and bargaining theory are 

compatible with my empirical results. 

Concerning the effect of EMP on LP, the empirical evidence shows a tradeoff between the two. Their inverse 

relationship may exist because the labor demand curve is downward sloping due to diminishing returns, implying 

that each additional worker hired contributes less and less to the value of the marginal product of labor.  Besides 

that, some authors have pointed to institutional factors. Among these factors, we have those that strengthen 

employment protection, which increases firing costs, making the firms' decisions more rigid when adjusting their 

workforce to demand, negatively impacting LP. (Okudaira, Takizawa, and Tsuru, 2013).  Likewise, Bjuggren 

(2018) empirically demonstrates that the more flexible a labor market is, the higher is LP.  For its part, Gordon 

(1995) asserts that any institutional policy or circumstance that pushes wages up will generate a movement along 

the labor demand curve in the northwest direction, negatively affecting EMP and favoring LP. 

Nonetheless, the evidence is ambiguous when the impact from LP to EMP is analyzed.  An increase in LP 

could generate efficiency gains reducing labor demand. (Gali, 1999; Dew-Becker and Gordon, 2008; 

Aparaschivei, Vasilescu, and Pirciog, 2011).  On the other hand, a rise in LP can boost the economy, making 

it necessary to hire additional labor (Mollick and Cabral, 2009).  Still, economic growth could generate a 

process where job creation overcomes job destruction. (Pivetz, Searson, and Spletzer, 2001).  The 

employment response would depend on the net effect on aggregate demand, supply-side factors -

technology, educational levels, capital stock- the temporal horizon, and institutions. 

Regarding the effect of RW on EMP, standard economic theory predicts that increasing labor costs would 

reduce EMP due to factor substitution. If labor becomes more expensive relative to capital, firms will 

substitute labor for capital. (Baker, Benjamin, and Stanger, 1999; Jung and Lim, 2020). On the other hand, 

since this substitution effect could occur at a firm or sector level, fired workers can be reallocated to other 

sectors, so the aggregate EMP does not necessarily decline. Notwithstanding, other theories indicate that if 

the rise in labor costs does not significantly affect the firms' competitiveness, workers with higher salaries 

will boost their consumption, positively expanding the aggregate demand affecting EMP. 

Other authors explain the impact of RW on EMP from a bargaining power or unionization perspective.  For 

instance, Rama (2001) finds that a minimum wage increase causes a modest EMP decrease overall.  

However, a mixed effect is present, which depends on the firm's size, where EMP in small firms decreases 

substantially, and large firms experience an EMP increase.  Similarly, Singell and Terborg (2007) also find 

a mixed effect at the sectoral level.  For some industries -e.g., food services- the minimum wage generates 

a negative EMP effect but a not statistically significant or even positive EMP effect in other industries. 

Lastly, higher demand for labor implies an increase in labor prices, assuming all other things are equal. 

Therefore, economic theory suggests RW tends to rise (dwindle) with a greater (lower) abundance of job 

opportunities.  But it is not only actual variations in EMP that affect wage levels but also the expectations about 
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how stable a job is.  Permanent employees, who have greater bargaining power, generally earn higher wage 

rates than fixed-term employees. (Jimeno and Toharia, 1993; Brown and Sessions, 2005; Amuedo-Dorantes 

and Serrano-Padial, 2007). Besides that, some models predict that the unemployment rate would not 

significantly influence wages under certain conditions.  For instance, when both the job seeker and the employer 

are limited to credible threats, implying a paradox in the labor market theory. (Hall and Milgrom, 2008). 

Thus, the interrelation between LP, RW, and EMP is complex, and several economic theories explain the 

causality from each of them to the others based on different theoretical frameworks. (See Table 1). 

Moreover, their effects could be positive, negative, or ambiguous, depending on the economy, sector, and 

temporal horizon under analysis.  Knowing the responses of these variables to the other ones' changes is a 

significant input for economic policy decisions in the labor market.  

This study contributes to the extant empirical literature by investigating the short and long run effects 

between LP, RW, and EMP for 25 OECD economies as a group for 1960-2019. For this purpose, I use 

several panel time-series techniques: error correction model (ECM), dynamic ordinary least squares 

(DOLS), fully modified ordinary least squares (FMOLS), autoregressive distributed lags (ARDL), and 

vector error correction model (VECM).  I use the ECM, DOLS, FMOLS, and ARDL approaches to test the 

theories mentioned when I have exogenous and endogenous variables. I use the VECM when all the 

variables in the system are assumed to be fully endogenous. 

The paper is organized as follows.  Section 2 provides a literature review of empirical evidence about the 

LP and RW relationship and between the LP, RW, and EMP nexus. This section covers how several 

economic theories are supported or rejected when real-world data is applied to different economies and 

periods using diverse econometric approaches.  Section 3 outlines the data and methodology used to 

estimate the short run and long run effects from each of the variables to the others.  Section 4 reports the 

empirical results.  Section 5 summarizes the main findings. 

 

Table 1: Causality among labor productivity, real wages, and employment 

 

    Source: Own elaboration, adapted and extended from Wakeford (2004). 

 

Causality Sign Theory

( - ) Efficiency gains lead to a reduction in labor demand

( + ) Positive output effect on employment

Bargaining theory

Marginal productivity theory

Induced technical change

Shirking model

Fairness model

Adverse selection model

Turnover model

Less productive workers are fired first

Workers increase effort to secure jobs

EMP → RW ( + ) Higher labor demand implies an increase in labor prices

LP → EMP

LP → RW ( + )

RW → EMP ( - ) Higher labor cost causes labor substitution

EMP → LP ( - )

RW → LP ( + )
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2. REVIEW OF THE EMPIRICAL LITERATURE 

2.1 Labor Productivity and Real Wage 

The relationship between LP and RW has been well explored in the economics literature.  As mentioned above, 

the efficiency wage and induced technical change theories support causality from RW to LP, while causality 

from LP to RW is backed by the marginal productivity and bargaining theories. The empirical evidence has 

found either unidirectional causation from RW to LP, unidirectional causation from LP to RW, or bidirectional 

causation depending on the economy analyzed, the period covered, and the econometric specification chosen. 

Regarding unidirectional causation from RW to LP, Marquetti (2004), investigating the relationship between 

these variables for the U.S. economy over the period 1869-1999 using a Granger non-causality test, indicates 

that RW Granger-cause LP, but LP does not Granger-cause RW. Yildirim (2015) finds unidirectional causality 

from RW to LP in the short run and long run for the Turkish manufacturing industry from 1988 to 2012, 

employing cointegration analysis and a Granger non-causality test. Dritsaki (2016) uses the cointegration 

ARDL framework and Toda and Yamamoto (1995)'s causality test to examine RW and inflation on LP for 

Bulgaria and Romania over 1991-2014.  This author concludes that there is a unidirectional causal relationship 

going from RW to LP for Romania but a lack of causality among RW and LP for Bulgaria.   

Iheanacho (2017) shows a positive and significant long run relationship between RW and LP, where the 

former is a significant driver of the latter only when inflation, real GDP per capita, and government 

expenditure, are included controls in an ARDL model for Nigeria over 1981-2012.  But Iheanacho does not 

find the same results when these controls are not included.  It is worth noting that, contrary to Dritsaki 

(2016), Iheanacho (2017) does not test the reverse causality from LP to RW. These findings appear to 

support non-mainstream theories of distribution-led technical change and growth, where the direction of 

causality seems to go from changes in income distribution to changes in labor productivity of the same sign. 

On the other hand, some authors have found more robust evidence supporting the marginal productivity 

and the bargaining theories instead of the efficiency wage theory.  Ferens (2017), elaborating an ARDL 

model to estimate the long run effects between LP and RW in the agricultural and manufacturing sectors 

between 1991 to 2016 for the Polish economy, documents long run causality running from LP to RW in 

both sectors, but the opposite causality could not be established statistically. Eryilmaz and Bakir (2018) 

focus their research on the relationship between LP, RW, and inflation in Turkey during 1988-2014.  Using 

a VECM to measure the short and long run impacts among the variables mentioned, the authors do not find 

support for the efficiency wage theory in Turkey. Still, the wage bargaining theory is more suitable to 

explain the long run dynamics of this economy during that period. 

Other authors have found evidence of bidirectional causality between LP and RW.  Strauss and Wohar 

(2004) study the linkage between LP, RW, and prices for a panel of 459 U.S. manufacturing industries at a 

four-digit industry-level over 1956-1996.  Their evidence suggests a stable long run relationship between 

LP and RW and between RW and prices for many, but not all industries. The authors observe bidirectional 

causality between LP and RW in aggregate terms; however, a one-to-one industry relationship between 

these two variables is firmly rejected. 

Kumar, Webber, and Perry (2012) analyze LP, RW, and inflation for the Australian manufacturing sector 

over 1965-2007.  Applying the VECM method and comparing its results with other time series techniques, 
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their study exhibits consistent results on the impact of RW on LP. At the same time, the Granger non-

causality test revealed a reciprocal causality running between LP and RW. 

De Souza (2017), extending Marquetti (2004) methodology, presents a multi-industry analysis using two 

disaggregated datasets, including both developing and developed economies, for a panel ECM.  De Souza 

shows evidence of cointegration and two-way, long run Granger causality between LP and RW.  Jain (2019), 

following a VECM for state-level panel data of manufacturing industries in the Indian economy over 2000-

2016, observes mutual causality between LP and RW in the long run.  However, this author argues that the 

efficiency wage theory is more appropriate as its long run disequilibrium correcting process is quicker as 

compared to the marginal productivity theory. 

Interestingly, when the relationship between LP and RW is investigated, some authors have found a non-

linear effect (Hondroyiannis and Papapetrout, 1997; Gneezy and Rustichini, 2000).  Tang (2014) estimates 

RW and inflation’s impact on LP in Malaysia's manufacturing sector using annual data from 1970 to 2007, 

where a Granger non-causality test within a VECM is used.  Tang reports a unilateral causality from RW to 

LP in both the short and long run, where its effect is non-monotonic and inverted U-shaped. 

 

2.2 Labor Productivity, Real Wage, and Employment (or Unemployment) 

An important question unaddressed in the above studies is whether increasing RW and corresponding LP 

changes imply job creation or job destruction on balance: whether employment rises or falls when workers 

become more productive.  For instance, an increase in LP could have an ambiguous effect on EMP because 

greater efficiency would reduce labor demand or because a higher output would encourage firms to hire 

more workers due to a potential demand expansion.  Conversely, lower EMP could incentivize workers to 

increase their effort to secure their jobs.  And concerning the RW-EMP nexus, an RW increase raises labor 

costs causing factor substitution, so a decrease in EMP. 

In the same way, an EMP increase would strengthen union bargaining power, leading to growth or maintaining 

workers' compensation in most cases. Consequently, like in the LP and RW analysis case, in the LP-RW-EMP 

relationship, several authors have reached different conclusions in the interaction of these three variables, 

depending on the economy and sector investigated, the period covered, and the econometric approach used.   

Regarding the inclusion of EMP, Yusof (2008) explores the long run and dynamic behaviors of the LP-RW-

EMP relationship. This author demonstrates the existence of cointegration between these three variables, 

with LP and EMP appearing to be exogenous. At the same time, RW is the principal variable that adjusts to 

maintain the long run relationship.  Additionally, Yusof (2008) documents that although RW negatively 

affects EMP in the short run, there is a positive relationship between RW and EMP in the long run.  

Concerning RW and LP, higher LP leads to higher RW.  And for the LP-EMP relationship, there does not 

appear to be any long run relationship between them.   

Bhattacharya et al. (2011) examine the long run relationship between LP and EMP and LP and RW for the Indian 

manufacturing sector.  These authors determined that LP-RW and LP-EMP are panels cointegrated for all 

industries and show unmistakable evidence of increasing EMP and RW boost LP for periods 1973-1974 and 

1999-2001. Habanabakize, Meyer, and Oláh (2019) investigate both the short and long run effects of LP, RW, 

and investment spending on EMP absorption rates in South Africa between 1995Q1 to 2019Q1. These authors 

show unidirectional positive causation from LP to EMP absorption and unidirectional negative causation from 
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RW to EMP absorption.  Additionally, the authors affirm the existence of a positive relationship between LP, 

EMP absorption, and investment spending but a negative effect from RW to EMP absorption in the long run. 

Other authors have used unemployment (UNM) as a variable interacting with LP and RW.  Wakeford (2004), 

applying an ECM and a Granger non-causality approach, explores the long and short run links of these three 

variables using quarterly data from 1983 to 2002 for South Africa. Wakeford finds cointegration between LP 

and RW, but UNM was not connected to the other two variables in the long run.  In other words, UNM has 

little or no effect in terms of restraining RW growth.  RW impacts LP negatively in the short run, but LP is not 

statistically significant in explaining RW variations.  However, Wakeford affirms that "not much can be said 

about unemployment in the short run owing to the construction of the unemployment data series."   

Karaalp-Orhan (2017) finds a significant and positive impact from RW and UNM to LP in the long run.  

The efficiency wage theory is supported since RW has a positive effect on LP.  There is a positive association 

between UNM and LP.  Consequently, the author suggests that a rise in RW and UNM rate may induce 

higher LP by increasing the probability and costs of job loss. Additionally, the causality test indicates 

unilateral causation from UNM to RW and bidirectional causation between UNM and LP. 

Ozturk et al. (2019) elaborate on a VECM where RW is the dependent variable, and LP and UNM rate are 

independent variables in the model for the construction sector in New Zealand between 1983 and 2017.  

After proving that RW, LP, and UNM rate are cointegrated, the authors document that the variables' short 

run deviations move towards the long run in about 12 periods. The authors also support that the LP index 

positively affects RW, while the UNM rate's impact on RW is negative. 

In the same way, Ozturk et al. (2020) follow the same approach as Ozturk et al. (2019) but use LP as a 

dependent variable and RW and UNM rate as independent variables.  The application is for the same sector, 

country, and period covered in Ozturk et al. (2019).  In this study, the authors calculate that the cointegrated 

equilibrium is reached in 1.67 periods. Furthermore, the authors indicate that RW has a positive effect on 

LP, while the UNM rate on LP is not statistically significant in the long run. 

Similar approaches to studying the dynamics among these variables have been considered in other works. 

For instance, Fedderke and Mariotti (2002) and OECD Employment Outlook (2004) determine that the 

difference between RW and LP's growth rates is associated negatively with EMP.  Junankar and Madsen 

(2004) conclude that RW and LP's wage gap is correlated positively with higher UNM. Klein (2012), 

applying a pooled estimation, fixed effects, and a dynamic estimation with unobserved panel effect, finds 

evidence that the rapid growth of the RW, which outpaced the LP growth in most South African sectors 

between 2008Q1 to 2011Q2, played an essential role in suppressing employment creation.  

 

3. DATA AND METHODOLOGY 

3.1 Description of the variables 

This study uses annual data from 1960 to 2019 taken from the Penn World Tables version 10.0.  The series 

used to construct the variables are the following: output-side real GDP at chained PPPs (in mil. 2017US$) 

(rgdpo), the share of labor compensation in GDP at current national prices (labsh), number of persons 

engaged (in millions) (emp), and population (in millions) (pop).  Since the numbers of LP and RW cover a 

broad range of values and their scales vary considerably across countries, it is convenient to analyze these 
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two variables in logarithms to reduce the wide range to a more manageable size.  Then, using these series, 

I construct the following variables: log labor productivity at constant 2017 purchasing power parity (LLP), 

log average real wage at constant 2017 purchasing power parity (LRW), and employment to population ratio 

(EPOP). (See Appendix 1).  The dataset is a balanced panel that includes 25 OECD countries1.  Appendix 

2 displays time-series plots for each country. 

 

3.2 Econometric methodology 

This paper's empirical strategy determines whether a long run relationship exists among the three variables 

of interest, LLP, LRW, and EPOP.  After demonstrating cointegration, I estimate the speed of adjustment to 

the long run equilibrium in both the cases where endogenous and exogenous variables compose the system 

and when all the system variables are endogenous.  The former case is analyzed using panels ECM, DOLS, 

FMOLS, and ARDL approaches, and the latter case is explored using a panel VECM. 

These ECM and VECM approaches allow obtaining both short run effects and the system's transition to an 

equilibrium in the long run, but they have similarities and differences.  The panels ECM, DOLS, FMOLS, 

and ARDL, are single-equation approaches.  The panel ECM can be applied when the variables in the system 

are either I(0) or I(1), not I(2) and this model requires at least a weak exogeneity of the explanatory variables.  

On the other hand, the panel VECM is a multi-equation approach constructed if there are variables I(1) in the 

system and cointegration is present.  The panel VECM model restricts the long run behavior of endogenous 

variables to converge to their cointegrating relationships. Like the panel ECM, the panel VECM is a system 

where each dependent variable is expressed in function of its lags and the other variables' lags.   

As mentioned above, these econometric approaches would be appropriate depending on if the variables are 

I(0) or I(1).  Accordingly, before proceeding to the panel cointegration analysis, unit-root tests are 

performed to know the order of integration of the variables. 

 

4. EMPIRICAL RESULTS 

4.1 Panel unit-root tests 

I perform several panel unit-root tests with different specifications to know the variables' stationary nature 

robustly.  The tests used are the following: Breitung (Breitung, 2001; Breitung and Das, 2005), Fisher-type 

test that combines the p-values from panel-specific unit-root tests employing the four methods proposed by 

Maddala and Wu (1999) and developed by Choi (2001), Harris-Tsavalis (Harris and Tsavalis, 1999), Im-

Pesaran-Shin (Im, Pesaran, and Shin, 2003), and Levin-Lin-Chu (Levin, Lin, and Chu, 2002). 

Consider a simple panel-data model: 

 (1) 

 
1 Australia, Austria, Belgium, Canada, Chile, Colombia, Denmark, Finland, France, Germany, Iceland, Ireland, Italy, Japan, 

Luxembourg, New Zealand, Norway, South Korea, Spain, Sweden, Switzerland, The Netherlands, The United Kingdom, The 

United States, and Turkey. 
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Where  is the variable to be tested: LLP, LRW, or EPOP,   are indexes of panels;  

are indexes of time; and  is a stationary error term.  The vector  could represent three cases: 1) the panel-

specific means, 2) panel-specific means and a time trend, and 3)  could not exist.  In the first case,  

and  are panel-specific means.  In the second case,  so  represents panel-specific means and 

linear time trends.  In the third case, .  The Breitung, Harris-Tsavalis, and Levin-Lin-Chu tests assume 

that there is a common unit-root process so that  is identical across panels:  for all i.  On the other hand, 

the Fisher-type and Im-Pesaran-Shin tests allow their tests' autoregressive parameters to be panel-specific. 

Additionally, these tests have different asymptotic behaviors required for N and T to derive the tests' limiting 

distributions.  Depending on the size of a sample in terms of both N and T, one panel unit-root test would 

be more appropriate than others.  For instance, a panel unit-root test that assumes either fixed N or N tending 

to infinity slower than T would be more convenient for long panels -small N and large T- cases. Hlouskova 

and Wagner (2006) and Barbieri (2009) present excellent overviews of the econometrics behind the panel 

unit-root tests and the statistics' asymptotic properties among the different specifications. 

Appendix 3 shows the statistics and their p-values in parenthesis for each test and specification of .  In 

most cases, the null hypotheses of unit-root presence are not rejected for the levels' variables.  But when 

these variables are expressed in first differences, the null hypotheses are rejected either at 1% or 5% 

significance.  Therefore, I can conclude that LLP, LRW, and EPOP are integrated of order one, or I(1). 

 

4.2   Panel cointegration tests 

Before deciding what econometric approach is more appropriate, knowing whether the system's three variables 

move together is required.  If the series are cointegrated, they have a long run relation, even if they temporarily 

deviate.  After concluding that LLP, LRW, and EPOP are all I(1), if there is a linear combination of the three 

I(1) variables that is stationary, I(0), the series are said to be cointegrated (Engle and Granger, 1987). 

 

4.2.1 Panel cointegration test: Pedroni 

Consider a simple panel-data model for the I(1) dependent variable : 

 (2) 

Where  is the dependent variable to be tested: LLP, LRW, or EPOP.  For each panel, each of the covariates 

in  are I(1) series and represent the other two variables in the system.   are indexes of 

panels, and  are indexes of time.  The term allows for panel-specific means, panel-specific 

means and a time trend, or could not exist, same as equation 1;  and  is the error term. 

The Dickey-Fuller t statistics in the Pedroni residual panel cointegration test in Table 2 are constructed by 

fitting equation 2 using ordinary least squares (OLS), obtaining the predicted residuals  as follows: 

 (3) 
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Where  is the autoregressive (AR) parameter and  is a stationary error term. 

The Phillips-Perron t-test statistics in the Pedroni's panel cointegration test in Table 2 are also constructed 

by fitting equation 2 using OLS, obtaining the predicted residuals  as follows: 

 (4) 

Where  is the panel-specific-AR parameter. 

That being said, I conduct Pedroni's Engel-Granger based panel cointegration test allowing for both the 

same-AR parameters ( ) as in equation 3 as within-dimension and the panel-specific-AR parameters ( ) 

as in equation 4 as between-dimension.  The within-dimension in Table 2 includes four weighted and four 

unweighted panel statistics, and the between-dimension consists of three group statistics.  Pedroni (1999) 

and Pedroni (2004) explain these seven tests' derivations and their asymptotic properties in more detail. 

Table 2 shows the statistics and p-values for Pedroni's tests for each series as a dependent variable and the 

other two as independent variables.  Based on the p-values, when LLP is the dependent variable, I reject the 

null hypothesis of no cointegration in six out of eleven cases, either at 1% or 5% significance.  When LRW is 

the dependent variable, the p-values indicate that I can reject the same null hypothesis of no cointegration 

since most of them -seven out of eleven- are less than 1% or 5%.  When EPOP is the dependent variable, the 

evidence suggests that I cannot reject the null hypothesis of no cointegration for the reason that in only one 

out of eleven events, the p-values are less than 10% significance.  I conclude that the variables are cointegrated 

when LLP and LRW are dependent variables but not when EPOP is the dependent variable. 

 

Table 2: Pedroni's panel cointegration test for LLP, LRW, and EPOP 

 
Notes: The null hypothesis is "no cointegration." The weighted and unweighted panel statistics' alternative hypothesis is "cointegration 

in all panels with common autoregressive coefficients in the residuals.".  The group statistics' alternative hypothesis is "cointegration 

in a subset of panels with panel-specific autoregressive coefficients in the residuals."  The deterministic specification includes a constant 

in the test equation and no deterministic trend. The optimal number of lags is chosen based on the Bayesian information criterion.  The 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West procedure. Use degree-of-freedom 

corrected Dickey-Fuller residual variances. 

Statistic Prob. Statistic Prob. Statistic Prob.

Weighted panel statistics

     v-statistic 1.22 0.1118 3.16 0.0008 0.73 0.2321

     rho-statistic -2.53 0.0058 -1.96 0.0252 0.76 0.7765

     PP-statistic -2.87 0.0021 -2.38 0.0087 0.48 0.6839

     ADF-statistic -5.02 0.0001 -4.37 0.0001 -0.63 0.2660

Unweighted panel statistics

     v-statistic 2.18 0.0146 4.04 0.0001 0.09 0.4650

     rho-statistic -0.37 0.3574 -0.83 0.2030 0.91 0.8179

     PP-statistic 0.03 0.5120 -0.55 0.2923 0.44 0.6688

     ADF-statistic -0.59 0.2791 -0.62 0.2665 0.38 0.6500

Group statistics

     rho-statistic -0.73 0.2327 -0.96 0.1681 1.81 0.9649

     PP-statistic -1.68 0.0465 -1.83 0.0339 1.22 0.8881

     ADF-statistic -3.94 0.0001 -3.67 0.0001 -1.38 0.0834

Dependent variable

LLP LRW EPOP
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4.2.2    Panel cointegration test: Westerlund 

I also perform the Westerlund cointegration test (Westerlund, 2005) as a robustness check.  This test assumes 

panel-specific cointegrating vectors in equation 2, where all panels have individual slope coefficients.  This 

test delivers several statistics based on a model where the AR parameter is either panel-specific-AR or panel-

same-AR across the panels.  The statistics are obtained by testing the existence of unit-root in the predicted 

residuals in equation 4.  All the statistics test the null hypothesis of no cointegration. The panel-specific-AR 

specifications' alternative hypothesis is "some panels are cointegrated."  The panel-same-AR specifications' 

alternative hypothesis is "all panels are cointegrated," which restricts  in equation 4. 

Table 3 confirms that when LLP and LRW are dependent variables, the system cointegrates.  On the other 

hand, when EPOP is the dependent variable, there is no evidence of cointegration since three out of four p-

values are greater than 5%. 

 

Table 3: Westerlund's panel cointegration test for LLP, LRW, and EPOP 

 
Notes: The null hypothesis is "no cointegration."   The demeaned, some, and trend panel statistics' alternative hypothesis is "some 

panels are cointegrated."  The all panels' alternative hypothesis is "all panels are cointegrated." 

 

 

4.2.3 Panel cointegration test: Fisher 

Unlike the Pedroni and Westerlund tests, one-way tests, the Fisher panel cointegration test is system-based 

for the entire panel set. The advantage of this test is that it tells us whether cointegration exists and how 

many cointegration equations are in the system.  Fisher (1932) derives a combined test from the results of 

individual independent tests.  Maddala and Wu (1999), based on Fisher's (1932) output, adjusted the 

Johansen test (Johansen, 1988; Johansen, 1991) to test the whole panel data by combining tests from 

individual cross-sections.  Fisher panel cointegration computes and reports the p-values based on 

MacKinnon, Haug, and Michelis (1999) using the asymptotic chi-squared distribution for the trace and the 

maximum eigenvalue tests.  

Table 4 provides evidence for the trace and the maximum eigenvalue tests that a long run relationship exists 

among the three variables.  Based on this test's p-values, I fail to reject the null hypothesis that there is at most 

one cointegrating equation in the system, meaning that there is one cointegration equation among these three 

variables.  The lag specification for differenced endogenous variables is chosen based on the Bayesian 

criterion in Appendix 4.  I select the Bayesian information criterion because it is considered more effective 

for model selection than its competitors, such as the Akaike information criterion. (Koehler and Murphree, 

1988; Cavanaugh and Neath, 1999; Medel and Salgado, 2013). 

 

Statistic Prob. Statistic Prob. Statistic Prob.

   Demean -2.34 0.0097 -2.54 0.0056 1.03 0.1523

   Some -3.41 0.0003 -3.65 0.0001 -2.07 0.0191

   Trend -2.47 0.0067 -1.29 0.0994 1.55 0.0611

   All panels -2.67 0.0038 -2.72 0.0033 -1.26 0.1038

Dependent variable

LLP LRW EPOP
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Table 4: Fisher's panel cointegration test for LLP, LRW, and EPOP 

 
Notes: The specification assumes that level data have linear trends, but the cointegrating equations have only intercepts. 

Probabilities are computed using asymptotic chi-square distribution. Two lags interval in first differences is chosen based on 

the Bayesian information criterion. 

 

 

 

4.3 Panel ECM for labor productivity and real wage  

The panel ARDL model contains the lagged value(s) of the dependent variable and the current and lagged 

values of regressors as explanatory variables.  Consider the generalized panel ARDL (p, q) form: 

 (5) 

Where  is the dependent variable of the ith cross-section unit: LLP, LRW, or EPOP;  is a  vector of 

unit-specific regressors that are allowed to be purely I(0) or I(1) or cointegrated, which in this case, it is a 

vector that contains the other two variables different to the dependent variable;  is a unit-specific fixed 

effect,  are indexes of panels,  are indexes of time, p and q are the optimal lags 

of the dependent and independent(s) variable(s), respectively, and  is a  vector of disturbances or errors.  

Time trends and other fixed regressors could be included. 

Since the panel cointegration tests demonstrate a long run relationship among the variables when LLP and 

LRW are dependent variables, I include an error correction term (ECT) in my generalized equation 5.  

Therefore, my ECMs for LLP and LRW are the following: 

 

 (5a) 

(5b) 

Where for both equations 5a and 5b, 

: Operator of first-differences for the short run effects 

 and : Short run dynamic coefficients 

,  

,  

: Speed of adjustment parameter with an expected negative sign 

: Error correction term 

Prob. Fisher statistic Prob.

None 110.30 0.0001 87.66 0.0008

At most 1 58.85 0.1831 45.25 0.6640

At most 2 79.04 0.0055 79.04 0.0055

Maximum eigenvalue test

Fisher statistic

Trace test
Hypothesized No. of CE(s)
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: Vector of long run coefficients 

The literature on dynamic heterogeneous panel estimation identifies several approaches to estimate equations 

5a and 5b when both N and T are large.  On the one hand, we have the dynamic fixed effects (DFE) estimator, 

which could be used when the time-series data for each group are pooled, and only the intercepts are allowed 

to differ across panels.  This specification requires the strong assumption that the slope coefficients and error 

variances are identical, meaning that all panel responses are the same in the long run and short run.  If the 

slope coefficients exhibit heterogeneity across panels, this estimator would generate inconsistent and 

misleading results. Another problem with the DFE estimator is the potential simultaneity bias due to the 

endogeneity between the residuals and lagged explanatory variables, especially for small samples. 

On the other hand, we have the mean group (MG) estimator proposed by Pesaran and Smith (1995).  

Contrary to the DFE, the MG estimator allows the intercepts, slope coefficients, and error variances to differ 

across panels.  This specification estimates separate regressions for each group and calculates a simple 

arithmetic average of the coefficients.  This estimator produces consistent estimates of the parameters' 

average under the assumption that both the intercepts and the slopes vary across panels, allowing 

heterogeneity in short- and long run relationships. 

In the middle, we have the pooled mean group (PMG) estimator proposed by Pesaran, Shin, and Smith 

(1999).  This estimator combines pooling and averaging of coefficients allowing the intercepts, short run 

coefficients, and error variances to differ across panels like the MG estimator but constrains the long run 

coefficients to be the same across panels like the DFE estimator. 

Before evaluating what ECM specification is more appropriate when the LLP and LRW are the dependent 

variables, selecting the optimal lag orders for both cases is required.  Finding the optimal lag order of the 

dependent and independent variables is essential for the performance of the ECM estimates of .  If the lag 

orders are underestimated, it will result in inconsistent estimates, while if the lag orders are overestimated, 

it will lead to a loss of efficiency.  Appendix 5 shows that when LLP and LRW are the dependent variables, 

and the other two are the independent ones in each case, based on the Bayesian information criterion, the 

ECM(1,1,1) is the model that fits better equations 5a and 5b. 

Knowing that the optimal lag order is one lag for each variable in the system, I perform the Hausman test 

to find what specification -DFE, MG, or PMG- is more appropriate for the ECMs.  Based on the Hausman 

test in Appendix 6, I cannot reject the null hypothesis that the PMG estimator is more efficient than MG 

and DFE when LLP and LRW are dependent variables. The first columns of Tables 5A and 5B present the 

ECMs for LLP and LRW as dependent variables, respectively, using the PMG specification.  The MG and 

DFE are used as a robustness check in the second and third columns.   

Based on Table 5A, I can conclude a long run causality running from LRW and EPOP jointly to LLP since 

the error correction terms (ECT) are statistically significant at 1%.  In the PMG specification, the system is 

getting back to equilibrium at a speed of 5.7% annually when LLP is the dependent variable, and the 

independent variables are LRW and EPOP. Concerning the long run individual effects, a 1% increase in RW 

leads to a 1.08% increase in LP in the long run.  This result supports the efficiency wages theory or alternative 

theories of distribution-led growth where a rise in RW induces higher worker productivity by raising job loss 

costs. For its part, a one percentage point increase in EPOP negatively affects LP by a 0.02% decrease in the 
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long run.  For the short run impacts, RW has a positive effect on LP.  A 1% increase in RW leads to a 0.83% 

increase in LP in the short run, while the EPOP's influence on LP is minimal and not statistically significant. 

An analogous description of the results can be done in Table 5B for LRW as a dependent variable.  Its output tells 

us that there exists a long run causality running from LLP and EPOP jointly to LRW.  In the PMG specification, 

the system is getting back to equilibrium at a speed of 8.4% annually when LRW is the dependent variable.  

Additionally, LLP's long run elasticity equal to 0.84% backs the performance-based pay and the bargaining 

theories.  Similarly, a one percentual point increase in EPOP also has a positive and statistically significant effect 

on RW in the long run, but its magnitude is so tiny, 0.01%.  About the short run dynamics, a 1% increase in LP 

causes a 0.74% increase in RW, while the short run effect from EPOP to LRW is not statistically significant. 

 

4.4 Panel DOLS and panel FMOLS 

As a robustness check, I also run dynamic ordinary least squares (DOLS) and fully modified ordinary 

least squares (FMOLS) estimations, which are methods to examine only long run parameters.  Both 

DOLS and FMOLS are performed using pooled, pooled weighted, and grouped specifications.  While the 

first and second specifications consider the 'within dimension' of the panel, the third one is based on the 

'between dimension.' 

 

4.4.1 Panel DOLS 

Pooled, pooled weighted, and grouped specifications of panel DOLS are extensions of the Saikkonen (1992) 

and Stock and Watson (1993) DOLS time-series estimator to panel data form.  Panel DOLS specifications 

augment the cointegrating regression with lags and leads of the short run terms.  Thus, serial correlation 

and asymptotic endogeneity are corrected, making the cointegrating equation's error term orthogonal to 

stochastic regressor innovations.  Consider the augmented panel cointegrating regression form: 

 (6) 

Where, 

: Dependent variable, either LLP or LRW, purged of the individual deterministic trends 

: Vector of the two independent variables different from the dependent variable, purged of the individual 

deterministic trends 

: Vector of long run coefficients, the coefficients of interest 

: Vector of short run dynamic coefficients 

: Lags of the differenced regressors,  

f: Leads of the differenced regressors,  

: Vector of disturbances or errors 

Let  be regressors constructed by interacting the  terms with cross-section dummy variables, and 

let . 

Pooled DOLS (Kao and Chiang, 2001) uses ordinary least squares to estimate the parameters of interest 

of equation 6, where its estimators can be expressed in the following form: 
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Pooled weighted DOLS (Mark and Sul, 1999; Mark and Sul, 2003), for its part, allows for heterogeneity 

in the individual long run residual variances, , obtained after running preliminary DOLS estimation.  

Its estimators are in the following form: 

 

Grouped DOLS (Pedroni, 2001b) estimates the parameters by taking the average over the individual 

cross-section DOLS estimates, where its estimators are obtained in the following form: 

 

Columns fourth, fifth, and sixth in Tables 5A and 5B show the pooled DOLS, pooled weighted DOLS, 

and grouped DOLS regressions when LLP and LRW are dependent variables, respectively.  Coefficients 

of the effects from LRW to LLP and LLP to LRW are similar in magnitude to those found in the ECM, 

where all signs are positive and statistically significant at a 1% level.  In Table 5A, EPOP negatively 

impacts LLP in two out of three specifications -pooled and pooled weighted- where the coefficients are 

statistically significant, confirming what is found in the ECM.  In Table 5B, an EPOP ratio has a positive 

and statistically significant effect at a 1% level on LRW in the same two out of three specifications, 

supporting what is found in the ECM. 

 

4.4.2 Panel FMOLS 

Like the panel DOLS, panel FMOLS also has the same three specifications: pooled, pooled weighted, and 

grouped, but in the FMOLS case, these specifications are extensions of the Phillips and Hansen (1990) 

FMOLS time-series estimator to panel data form, where these authors present an FMOLS asymptotically 

unbiased estimator that eliminates problems caused by the long run correlation between stochastic regressor 

innovations and the cointegrating equation. 

Consider the panel cointegrating equation form: 

 (7) 

 

 

Where, 

: Dependent variable, either LLP or LRW 

: Vector of the two independent variables different from the dependent variable 

: Vector of long run coefficients, the coefficients of interest 
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: Deterministic trend regressors in both the regressor equation and cointegrating equation 

: Deterministic regressors included in the regressor equation but excluded in the cointegrating equation 

: Vector of disturbances or errors 

If the deterministic trend terms in the panel cointegrating equation consist only of cross-section dummy 

variables, equation 7 becomes: 

 (7') 

And, 

 

Let  the one-sided long run covariance matrix, and  the long run covariance matrix, where: 

 

 

The modified dependent variable, , and the serial correlation correction term, , are expressed as follows: 

 

 

 

Pooled FMOLS (Phillips and Moon, 1999) estimator sums across cross-sections separately in the numerator 

and denominator.  This estimator can be expressed in the following form: 

 

Pooled weighted FMOLS (Kao and Chiang, 2001; Pedroni, 2001a) is an estimator for heterogeneous 

cointegrated panels.  This estimator is calculated by allowing the long run variances to differ across cross-

sections, and it can be obtained from the following expression: 

 

Where, 

 

 

 

 

: Preliminary estimate of the long run coefficient 
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Grouped FMOLS (Pedroni, 2001a; Pedroni, 2001b) estimator averages the individual cross-sections.  Its 

estimator is the following: 

 

Columns seventh, eighth, and ninth in Tables 5A and 5B show the pooled FMOLS, pooled weighted 

FMOLS and grouped FMOLS regressions when LLP and LRW are dependent variables, respectively.  Like 

the ECM and DOLS cases, coefficients of the effects from LRW to LLP and LLP to LRW are all positive 

and statistically significant at a 1% level.  In Table 5A, EPOP negatively impacts LLP in the pooled and 

pooled weighted specifications. At the same time, in Table 5B, an EPOP ratio has a positive and statistically 

significant effect at a 1% level on LRW in the same two specifications. Contrary to expected, the grouped 

FMOLS specifications are the only ones that show an opposite and statistically significant effect from EPOP 

to LLP and EPOP to LRW in Tables 5A and 5B, respectively, compared to all the others in the ECM, DOLS, 

and FMOLS specifications. 

 

Table 5A: ECM, DOLS, and FMOLS models for LLP as the dependent variable 

 

Notes: For the ECM specifications, the optimal number of lags is chosen based on the Bayesian information criterion, and a constant 

is included as a fixed regressor.  For all the DOLS specifications, the optimal lags and leads are chosen based on the Bayesian 

information criterion. The lag specification for the long run variance is based on the Bayesian information criterion. The Bartlett kernel 

is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-of-freedom 

adjustment is used. The coefficient covariance matrix for the pooled DOLS is calculated assuming homogeneous variances. The 

individual covariances for the grouped DOLS are calculated using a rescaled OLS method.  For all the FMOLS specifications, the 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-

of-freedom adjustment is used to calculate their long run variances. The coefficient covariance matrix for the pooled FMOLS is 

calculated assuming homogeneous variances. Standard errors in parentheses. * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. 

 

 

 

 

 

PMG MG DFE Pooled Pooled W. Grouped Pooled Pooled W. Grouped

Long-run

1.0798*** 1.1382*** 1.1074*** 1.0895*** 1.0702*** 1.0359*** 1.0893*** 1.0854*** 1.0346***

(0.0097) (0.0688) (0.0381) (0.0047) (0.0076) (0.0482) (0.0058) (0.0001) (0.0031)

-0.0177*** -0.0333 -0.0051 -0.0085*** -0.0048*** 0.0043 -0.0091*** -0.0030*** 0.0045***

(0.0021) (0.0282) (0.0037) (0.0011) (0.0017) (0.0139) (0.0013) (0.0002) (0.0008)

-0.0569*** -0.1829*** -0.0398***

(0.0158) (0.0380) (0.0100)

Short-run

0.8270*** 0.7014*** 0.8781***

(0.0309) (0.0374) (0.0170)

0.0007 0.0021* -0.0017**

(0.0012) (0.0012) (0.0007)

0.0320*** 0.0963* -0.0103

(0.0074) (0.0552) (0.0137)

FMOLS

Constant

Δ EPOP t-1

DOLS

Δ LRW t-1

ECT

EPOP

LRW

ECM
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Table 5B: ECM, DOLS, and FMOLS models for LRW as the dependent variable 

 
Notes: For the ECM specifications, the optimal number of lags is chosen based on the Bayesian information criterion, and a constant 

is included as a fixed regressor.  For all the DOLS specifications, the optimal lags and leads are chosen based on the Bayesian 

information criterion. The lag specification for the long run variance is based on the Bayesian information criterion. The Bartlett kernel 

is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-of-freedom 

adjustment is used. The coefficient covariance matrix for the pooled DOLS is calculated assuming homogeneous variances. The 

individual covariances for the grouped DOLS are calculated using a rescaled OLS method.  For all the FMOLS specifications, the 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-

of-freedom adjustment is used to calculate their long run variances. The coefficient covariance matrix for the pooled FMOLS is 

calculated assuming homogeneous variances. Standard errors in parentheses. * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. 

 

 

4.5   Panel ARDL for employment-to-population ratio 

Since there is no cointegration when EPOP is the dependent variable, I only specify the short run ARDL 

model.  My reparametrized panel ARDL (p, q) from equation 5 for this case is the following: 

 (5c) 

Appendix 7 shows that the optimal lag length for equation 5c is three lags.  Therefore, equation 5c is ran 

using three lags for each independent variable, as indicated in Appendix 8.   However, it seems like the 

independent variable  might be redundant because it is not statistically significant (p-value = 

0.5017, not shown), and its coefficient in absolute terms is minimal.  Hence, I perform a redundant variable 

test to this variable, which results are presented in Appendix 9. Based on the F and the Likelihood ratio 

statistics, I cannot reject the null hypothesis that the variable  is insignificant. 

Table 6 exhibits the short run ARDL regression when EPOP is the dependent variable after dropping its 

third lag in the set of independent variables.  I can conclude that an increase in LLP positively impacts 

EPOP, meaning that greater efficiency in the short run triggers economic activity, giving room for more 

jobs in the short run.  On the other hand, an increase in LRW negatively affects EPOP, probably due to 

factor substitution caused by higher labor costs in the short run.  Appendix 10 shows the Wald tests for the 

joint significance of the lags of LLP and LRW.  These tests confirm that LLP lags and LRW lags are jointly 

significant to explain the model's short run dynamics. 

 

PMG MG DFE Pooled Pooled W. Grouped Pooled Pooled W. Grouped

Long-run

0.8354*** 0.8056*** 0.7894*** 0.9086*** 0.9313*** 0.9632*** 0.9098*** 0.9146*** 0.9641***

(0.0125) (0.0388) (0.0326) (0.0038) (0.0062) (0.0141) (0.0049) (0.0001) (0.0030)

0.0097*** 0.0118*** 0.0063** 0.0101*** 0.0052*** -0.0034 0.0102*** 0.0015*** -0.0037***

(0.0015) (0.0040) (0.0026) (0.0009) (0.0014) (0.0042) (0.0012) (0.0003) (0.0008)

-0.0840*** -0.2030*** -0.0553***

(0.0156) (0.0319) (0.0101)

Short-run

0.7384*** 0.6273*** 0.7631***

(0.0370) (0.0411) (0.0156)

0.0003 -0.0012 0.0023***

(0.0009) (0.0010) (0.0007)

0.7008*** 0.0273 0.0843***

(0.0122) (0.0607) (0.0126)

EPOP

FMOLSDOLS

LLP

ECT

Δ LLP t-1

Δ EPOP t-1

Constant

ECM
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Table 6: Short run ARDL model for ΔEPOP as the dependent variable  

and ΔLLP and ΔLRW as independent variables 

 
Notes: *** p < 0.01, ** p < 0.05, * p < 0.10.  Standard errors in parenthesis 

 

 

 

 

4.6 Panel vector error correction model (VECM) 

As a robustness check of the results found for the panels ECM, DOLS, FMOLS, and ARDL, I assume an entirely 

endogenous system in this section, which is not true.  The endogenous three-equations system to be estimated 

is the following: 

 (5a) 

(5b) 

 (5c') 

 

If the previous analysis results are robust, I would expect the speed of adjustment parameters when LLP 

and LRW are the dependent variables to be statistically significant.  On the other hand, since there is no 

cointegration when EPOP is the dependent variable, I constraint the  in the equation 5c'.  

Appendix 11 shows the LR test for binding restriction, where the null hypothesis  is not 

rejected.  It confirms that EPOP is weakly exogenous, meaning that this variable does not adapt to the long 

run deviations, and LLP and LRW are making the adjustment. 

The optimal lag length for a panel VECM should be the optimal lag order for a panel VAR minus one.  

However, as shown in Appendix 4, there is no consensus about the panel VAR's optimal lag length among the 

Variable Coefficient

0.5264***

(0.0268)

-0.0705**

(0.0270)

3.9125***

(0.8494)

1.9168**

(0.8491)

1.4863*

(0.8511)

-2.3652***

(0.9061)

-3.0793***

(0.8959)

-1.8503**

(0.8981)

0.0736***

(0.0223)

Δ LLP t-3

Δ LRW t-1

Δ LRW t-2

Δ LRW t-3

Constant

Δ EPOP t-1

Δ EPOP t-2

Δ LLP t-1

Δ LLP t-2
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information criteria.  Since I must choose a sufficient number of lags to avoid serial correlation in the residuals, 

I performed several VEC residual serial correlation Lagrange Multiplier tests starting from one lag and 

increasing them until five lags.  At lag five, I could not reject the null hypothesis of "no serial correlation at 

lag h" and the null hypothesis of "no serial correlation at lags 1 to h at 5% significance."  Consequently, I 

choose five lags for this three-variables model.  Appendix 12 presents the VEC residual serial correlation LM 

tests for five lags in the panel VECM.  Additionally, Appendix 13 shows the VEC residual Portmanteau test 

for autocorrelation as a robustness check, concluding no serial correlation in the VECM with five lags. 

Appendix 14 displays the panel VECM results.  The error correction terms for LLP and LRW as dependent 

variables are statistically significant at 1% significance. Still, their adjustment speeds are 1.1% and 0.5%, 

respectively, lower than those in the ECM.  

Regarding the short run effects, the Wald tests shown in Appendix 15 tell us whether each independent 

variable's five lags are jointly significant to explain the dependent variable.  The Wald test about the short 

run effect from LRW to LLP is statistically significant at 1% significance.  This finding is consistent with 

what was found for the ECM, where LRW shows a positive and statistically significant impact on LLP in 

the short run.  For the short run impact from EPOP to LLP, the Wald test reveals that the EPOP's five lags 

are jointly significant to explain LLP's negative effect at 5% significance. 

Like the ECM, in the panel VECM, the short run effect from LLP to LRW is also positive and statistically 

significant at 1% significance.  On the other hand, the short run impact from EPOP to LRW is statistically 

significant, different from the ECM case, where its effect is not statistically significant in the PMG and MG 

specifications.  For its part, like the short run ARDL model, the panel VECM indicates that an LLP increase 

has a positive effect on EPOP, and LRW increase impacts negatively on EPOP in the short run, both 

statistically significant at 1% significance. 

To evaluate the stability of the panel VECM, I need to obtain the roots of the characteristic polynomial.  For 

a k-variables model with r cointegrating equations, the companion matrix will have  unit eigenvalues.  

If the system's stability holds, the remaining eigenvalues' moduli must be less than one.  In this case, since 

 and  as found in Fisher's cointegration test, this system must have at most two imposed unit-roots, 

and the rest of the eigenvalues must be inside the unit circle.  Appendix 16 confirms the system's stability. 

Figure 1 presents the responses of each variable to the impulses of the other two.  I use the generalized 

impulses specification to construct an orthogonal set of innovations that do not depend on the VEC ordering 

(Pesaran and Shin, 1998).  The impulse-response functions (IRFs) confirm what I find in most single-

equation specifications: ECM, DOLS, and FMOLS.  There is a two-way causality between LLP and LRW, 

and these effects are positive and permanent in the long run.  EPOP negatively affects LLP and positively 

affects LRW.  Still, their impacts seem much smaller in magnitude, but contrary to the single-equation 

approach, they are not statistically significant. 

Regarding LLP and LRW on EPOP, while the former is positive, the latter is negative, consistent with the ARDL 

model results. However, it seems like only LLP has a significant impact on EPOP in the medium-run.  Since the 

variables under study modeled in the VECM are I(1), they are not mean-reverting; therefore, it is expected that 

some shocks would not die out over time.  Additionally, notice that the scale of the vertical axis of responses of 

EPOP is different because this variable is expressed in percentual points while LLP and LRW are in logarithm. 
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Figure 1: Impulse-responses to generalized one standard deviation innovations, 95% 

confidence interval using Hall’s percentile bootstrap with 1000 bootstrap repetitions 

 

Response of LLP to LRW

 

Response of LLP to EPOP

 
Response of LRW to LLP

 

Response of LRW to EPOP

 
Response of EPOP to LLP

 

Response of EPOP to LRW

 
  

4.7 Robustness check: labor productivity per hour worked and real wage per hour worked 

Alternative ways to measure LP and RW are labor productivity per hour worked (LPH) and average real 

wage per hour worked (RWH), respectively.  Appendix 17 shows how these two variables are constructed 

using PWT 10.0.  Since several countries in the panel do not have data for average annual hours worked by 

persons engaged in the 60s, I replicate the previous regressions using the same 25 OECD economies in 

1970-2019 using LPH, RWH, and EPOP. 

These three variables are non-stationary in levels but stationary in the first differences, as shown in 

Appendix 18.  Pedroni's cointegration test shows evidence of cointegration when LPH is the dependent 

variable.  It is because, in seven out of eleven cases, the null hypothesis of no cointegration is rejected either 

at 1%, 5%, or 10% significance level.  This test also demonstrates that cointegration exists when RWH is 

the dependent variable. In six out of eleven cases, the same null hypothesis is rejected either at 1% or 5% 
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significance level for this variable.  And like the EPOP's case for 1960-2019, for 1970-2019 again, there is 

no evidence of cointegration when EPOP is the dependent variable. (See Appendix 19). Westerlund's 

cointegration test is also run as a robustness check.  (See Appendix 20). Like in the LLP and LRW cases, 

the optimal lag length for their ECMs when they are the dependent variables, using the Bayesian 

information criterion, is ECM(1,1,1). (See Appendix 21). 

Tables 7A and 7B show the ECMs for LPH and RWH, respectively.  Like Tables 5A and 5B, the ECM, 

DOLS, and FMOLS models are displayed with different specifications.  Like the LLP and LRW cases, in 

most cases, LPH and RWH have a positive and statistically significant impact on each other. Still, their 

magnitudes differ since these variables are different by construction.  For instance, in the PMG specification 

of the ECM, from Table 7A, I can say that there exists a long run causality running from RWH and EPOP 

jointly to LPH since the error correction term (ECT) is statistically significant at 1%.  In the PMG 

specification, the system is getting back to equilibrium at a speed of 10.4% annually when LPH is the 

dependent variable, and the independent variables are RWH and EPOP. 

In the same PMG specification in Table 7A, a one dollar per hour worked increase in real wages leads to a 1.9 

dollars rise in output per hour worked in the long run, on average, and ceteris paribus.  Concerning the effect 

of EPOP on LPH in the long run, this table presents evidence of an adverse impact from EPOP to LPH in the 

PMG specification: one percentual point increase in the employment-to-population ratio decreases LPH by 

0.12 dollars in the long run.  In any case, Table 7A shows that it is always negative in the other specifications 

when it is statistically significant at 1% or 10% level.  In Table 7B, EPOP positively impacts RWH in all nine 

specifications, where eight of them are statistically significant at a 1% level. 

 

Table 7A: ECM, DOLS, and FMOLS models for LPH as the dependent variable 

 
Notes: For the ECM specifications, the optimal number of lags is chosen based on the Bayesian information criterion, and a constant 

is included as a fixed regressor.  For all the DOLS specifications, the optimal lags and leads are chosen based on the Bayesian 

information criterion. The lag specification for the long run variance is based on the Bayesian information criterion. The Bartlett kernel 

is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-of-freedom 

adjustment is used. The coefficient covariance matrix for the pooled DOLS is calculated assuming homogeneous variances. The 

individual covariances for the grouped DOLS are calculated using a rescaled OLS method.  For all the FMOLS specifications, the 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-

of-freedom adjustment is used to calculate their long run variances. The coefficient covariance matrix for the pooled FMOLS is 

calculated assuming homogeneous variances. Standard errors in parentheses. * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. 

PMG MG DFE Pooled Pooled W. Grouped Pooled Pooled W. Grouped

Long-run

1.8968*** 1.9698*** 1.1278 1.7468*** 1.7168*** 1.9578*** 1.6804*** 1.6836*** 1.9710***

(0.0285) (0.1306) (0.8002) (0.0291) (0.0266) (0.0929) (0.0403) (0.0015) (0.0200)

-0.1245*** -0.8620** 0.9929 -0.0288* -0.0219 -0.1090* 0.0026 -0.0007 -0.1147***

(0.0256) (0.3718) (1.1887) (0.0168) (0.0154) (0.0559) (0.0229) (0.0007) (0.0112)

-0.1035*** -0.2207*** 0.0127

(0.0328) (0.0370) (0.0115)

Short-run

1.2894*** 1.1101*** 1.7461***

(0.0857) (0.0754) (0.0453)

0.0472 0.1501** -0.0970*

(0.0547) (0.0579) (0.0517)

0.3160** 3.1052*** 0.4947

(0.1536) (1.0551) (0.4369)

ECM DOLS FMOLS

LRW

EPOP

ECT

Δ LRW t-1

Δ EPOP t-1

Constant
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Table 7B: ECM, DOLS, and FMOLS models for RWH as the dependent variable 

 
Notes: For the ECM specifications, the optimal number of lags is chosen based on the Bayesian information criterion, and a constant 

is included as a fixed regressor.  For all the DOLS specifications, the optimal lags and leads are chosen based on the Bayesian 

information criterion. The lag specification for the long run variance is based on the Bayesian information criterion. The Bartlett kernel 

is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-of-freedom 

adjustment is used. The coefficient covariance matrix for the pooled DOLS is calculated assuming homogeneous variances. The 

individual covariances for the grouped DOLS are calculated using a rescaled OLS method.  For all the FMOLS specifications, the 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West automatic procedure, and degrees-

of-freedom adjustment is used to calculate their long run variances. The coefficient covariance matrix for the pooled FMOLS is 

calculated assuming homogeneous variances. Standard errors in parentheses. * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. 

 

 

With respect to the short run effects from LPH and RWH on EPOP, I run a panel ARDL, where three lags are 

the optimal lag length for this model based on three out of five information criteria. (See Appendix 22).  Table 

8 shows that, like the EPOP-LLP-LRW case, while LPH has a positive effect on EPOP in the short run, an 

RWH increase adversely impacts EPOP.  The Wald test presented in Appendix 23 shows that the three lags of 

each independent variable cause EPOP jointly.  Finally, a panel VECM could not be performed for the LPH-

RWH-EPOP case because serial autocorrelation of residuals is present for all possible lags in the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PMG MG DFE Pooled Pooled W. Grouped Pooled Pooled W. Grouped

Long-run

0.4771*** 0.4802*** 0.2294 0.5332*** 0.5456*** 0.5122*** 0.5360*** 0.5472*** 0.5103***

(0.0076) (0.0225) (0.2372) (0.0078) (0.0078) (0.0075) (0.0125) (0.0015) (0.0040)

0.1142*** 0.3709*** 1.0387 0.0555*** 0.0434*** 0.0623*** 0.0567*** 0.0471*** 0.0627***

(0.0134) (0.0977) (0.8813) (0.0077) (0.0076) (0.0076) (0.0121) (0.0007) (0.0039)

-0.1230*** -0.2410*** -0.0125

(0.0300) (0.0312) (0.0099)

Short-run

0.3795*** 0.3188*** 0.3410***

(0.0314) (0.0291) (0.0100)

-0.0005 -0.0709** 0.0640***

(0.0285) (0.0331) (0.0230)

-0.1009 -2.1198*** -0.2599

(0.1135) (0.5373) (0.1946)

ECM DOLS FMOLS

Constant

Δ EPOP t-1

LLP

EPOP

ECT

Δ LLP t-1
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Table 8: Short run ARDL model for ΔEPOP as the dependent variable  

and ΔLPH and ΔRWH as independent variables 

 

Notes: *** p < 0.01, ** p < 0.05, * p < 0.10.  Standard errors in parenthesis 

 

 

 

 

5 CONCLUDING REMARKS 

This paper contributes to the literature about the interaction between LP, RW, and EPOP in the OECD 

countries, using two approaches: 1) with exogenous and endogenous terms and 2) restricting the system to 

only endogenous variables as a robustness check. The results found validate several economic theories 

depending on the intertemporal horizon. 

One of my empirical findings is that EPOP is weakly exogenous in this 3-dimensional system, meaning that 

this variable does not adapt to the long run deviations, and the adjustment is borne out by LP and RW. 

Regarding the relationship between LP and RW, the results show bidirectional causality between them, 

supporting the induced technical change, efficiency wages, and bargaining theories over the marginal 

productivity for the OECD countries considered in my sample as a group and including employment the 

third variable in this system. The impact of this double causality is in both the short and long run, being the 

long run effects are a little more substantial in magnitude.  

This study also finds a small and negative long run causality running from EPOP to LP only for the single-

equation specifications. There would be several explanations for this inverse relationship, but among these 

reasons are the positive association between the dismissal of the less productive workers and increases in 

LP, and the incentive that workers could have to increase their effort level when EPOP is declining in the 

economy overall.  About the impact from EPOP to RW, I find a small and positive relationship in most of 

the nine single-equation specifications in the long run, but not in the multi-equation approach. 

Variable Coefficient

0.5357***

(0.0297)

-0.0629*

(0.0337)

-0.0403

(0.0297)

0.0586***

(0.0146)

0.0254*

(0.0148)

0.0226

(0.0148)

-0.1104***

(0.0327)

-0.0834**

(0.0328)

-0.0263

(0.0332)

0.1040***

(0.0246)

Δ EPOP t-1

Δ EPOP t-2

Δ EPOP t-3

Constant

Δ RWH t-1

Δ RWH t-2

Δ RWH t-3

Δ LPH t-1

Δ LPH t-2

Δ LPH t-3



 

25 

 

For its part, the single-equation models and the multi-equation specification are consistent in finding a 

positive short run causality from LP to EPOP, and negative short run causation from RW to EPOP is 

statistically significant only in the single-equation models. The findings mentioned above on the causality 

among LP, RW, and EPOP are robust to the two measures of LP and RW: per worker and hour worked. 
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APPENDIX 

Appendix 1: Construction of the logarithm of labor productivity at constant 2017 purchasing 

power parity (LLP), the logarithm of average real wage at constant 2017 purchasing power parity 

(LRW), and employment-to-population ratio (EPOP).   

 

• The logarithm of labor productivity at constant 2017 purchasing power parity (LLP) 

 

 

• The logarithm of average real wage at constant 2017 purchasing power parity (LRW) 

 

 

• Employment to population ratio (EPOP) 

 

Where, 

rgdpo: Output-side real GDP at chained PPPs (in mil. 2017US$).  Output-side real GDP allows a 

comparison of productive capacity across countries and over time. 

labsh: Share of labor compensation in GDP at current national prices.  Reports the share represented by 

labor income in GDP in terms of the prices in that period (i.e., current prices). 

emp: Number of persons engaged (in millions). "Per person engaged" in PWT includes all persons aged 15 years 

and over, who during the reference week performed work, even just for one hour a week, or were not at work 

but had a job or business from which they were temporarily absent.  It includes self-employed persons. 

pop: Population (in millions).  Reports population data by country from the World Bank and United Nations 

sources. 
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Appendix 2: The logarithm of labor productivity at constant 2017 purchasing power parity 

(blue line), the logarithm of average real wage at constant 2017 purchasing power parity 

(light green line), and the employment-to-population ratio (dashed line) for the 25 countries 

in the sample. The employment-to-population ratio series are on the right axis. 
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Appendix 3: Panel unit-root tests for LLP, LRW, and EPOP in levels and first differences 

 

Notes: *** p-value < 0.01, ** p-value < 0.05. Operator Δ before the name of the variables denotes that the variable is expressed in 

first-differences. The null hypothesis for the Breitung, Harris-Tsavalis, and Levin-Lin-Chu tests is that panels contain unit-roots, 

and their alternative hypothesis is that panels are stationary. The null hypothesis for the Fisher-type tests is that all panels contain 

unit-roots, and their alternative hypothesis is that at least one panel is stationary. The null hypothesis for the Im-Pesaran-Shin test 

is that all panels contain unit-roots, and their alternative hypothesis is that some panels are stationary. I choose the optimal lags for 

the Im-Pesaran-Shin, and the Levin-Lin-Chu tests based on the Bayesian information criterion.  

 

 

 

 

 

Appendix 4: VAR lag order selection criteria for endogenous variables LLP, LRW, and EPOP 
 

 
Notes: *Indicates lag order selected by the criterion.  LR: sequential modified LR test statistic (each test at a 5% level). FPE: 

Final predictor error.  AIC: Akaike information criterion.  BIC: Bayesian information criterion.  HQ: Hannan-Quinn information 

criterion. Endogenous variables: LLP, LRW, and EPOP. 

 

 

 

 

 

 

 

 

 

Panel unit-root test Specification  LLP  LRW EPOP  ∆LLP  ∆LRW  ∆EPOP

z'it = 1 16.42 15.8 6.24 -13.20*** -11.51*** -14.34***

z'it = 0 21.24 20.65 6.42 -17.72*** -17.20*** -17.46***

z'it = (1, t) 7.20 7.37 4.02 -19.28*** -17.37*** -13.45***

Inv. χ
2
, ADF 20.05 37.42 33.54 67.60** 91.43*** 83.81***

Inv. normal, ADF 3.29 2.4 2.33 -2.55*** -4.17*** -3.89***

Inv. logit t, ADF 3.42*** 2.64 2.36 -2.43*** -4.11*** -3.70***

Modified inv. χ
2
, ADF -2.2 -1.26 -1.65 1.76** 4.14*** 3.38***

z'it = 1 0.98 0.98 0.99 0.12*** 0.14*** 0.45***

z'it = 0 1.00 1.00 1.00 0.39*** 0.39*** 0.49***

z'it = (1, t) 0.93 0.93 0.93 0.17*** 0.18*** 0.47***

z'it = 1 -2.74*** -2.79*** 1.19 -27.04*** -23.71*** -18.41***

z'it = (1, t) 1.79 1.45 -2.62*** -27.88*** -25.28*** -16.93***

z'it = 0, unadjusted t 25.86 19.95 4.58 -20.23*** -19.26*** -22.00***

z'it = 0, adjusted t 25.57 19.72 4.52 -20.00*** -19.05*** -21.77***

z'it = (1, t) -0.72 -1.79** -5.48*** -29.27*** -25.92*** -18.07***

Breitung

Fisher

Harris-Tsavalis

Im-Pesaran-Shin

Levin-Lin-Chu

 Lag LogL FPE AIC BIC HQ

0 -4268.34 NA 1.43E-01 6.57 6.58 6.58

1 4292.78 17069.57 2.77E-07 -6.59 -6.54 -6.57

2 4523.07 458.10 1.97E-07 -6.93 -6.84 -6.89

3 4557.72 68.77 1.89E-07 -6.97  -6.85*  -6.92*

4 4568.01 20.36 1.89E-07 -6.97 -6.81 -6.91

5 4592.13 47.65   1.85E-07*  -6.99* -6.80 -6.92

6 4597.39 10.36 1.86E-07 -6.99 -6.76 -6.90

7 4607.23   19.34* 1.86E-07 -6.99 -6.72 -6.89

8 4613.33 11.97 1.86E-07 -6.98 -6.68 -6.87

LR
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Appendix 5: Model selection criterion for the ECM models for  

LLP and LRW as dependent variables 

 

   Note: BIC: Bayesian information criterion. 

 

 

Appendix 6: Hausman tests 

 

Hausman test between PMG and MG 

Null hypothesis: Difference in coefficients is not systematic. PMG is more efficient than MG. 

Alternative hypothesis: The null hypothesis is not true. 

 

Hausman test between PMG and DFE 

Null hypothesis: Difference in coefficients is not systematic. PMG is more efficient than DFE. 

Alternative hypothesis: The null hypothesis is not true. 

 

BIC Specification BIC Specification

-5.1284 (1, 1, 1) -5.2259 (1, 1, 1)

-5.0328 (1, 2, 2) -5.1662 (2, 1, 1)

-5.0238 (2, 1, 1) -5.0654 (1, 2, 2)

-4.9554 (2, 2, 2) -5.0624 (3, 1, 1)

-4.9292 (3, 1, 1) -5.0247 (2, 2, 2)

-4.8549 (3, 2, 2) -4.9486 (4, 1, 1)

-4.8285 (1, 3, 3) -4.9207 (3, 2, 2)

-4.8184 (4, 1, 1) -4.8616 (1, 3, 3)

-4.7531 (2, 3, 3) -4.8590 (5, 1, 1)

-4.7493 (4, 2, 2) -4.8179 (4, 2, 2)

-4.7411 (5, 1, 1) -4.7952 (2, 3, 3)

-4.6630 (5, 2, 2) -4.7337 (5, 2, 2)

-4.6495 (3, 3, 3) -4.7008 (3, 3, 3)

-4.6026 (1, 4, 4) -4.6456 (1, 4, 4)

-4.5429 (4, 3, 3) -4.6056 (2, 4, 4)

-4.5363 (2, 4, 4) -4.5932 (4, 3, 3)

-4.4546 (5, 3, 3) -4.5137 (5, 3, 3)

-4.4325 (3, 4, 4) -4.4789 (3, 4, 4)

-4.4127 (1, 5, 5) -4.4566 (1, 5, 5)

-4.3558 (4, 4, 4) -4.4286 (4, 4, 4)

-4.3519 (2, 5, 5) -4.3692 (2, 5, 5)

-4.2622 (5, 4, 4) -4.3367 (5, 4, 4)

-4.2463 (3, 5, 5) -4.2880 (3, 5, 5)

-4.1630 (4, 5, 5) -4.1998 (4, 5, 5)

-4.0697 (5, 5, 5) -4.0927 (5, 5, 5)

Dependent variable: LLP Dependent variable: LRW

χ
2

df = 2

Prob. > χ
2

Dependent variable: LLP Dependent variable: LRW

PMG vs. MG PMG vs. DFE PMG vs. MG PMG vs. DFE

0.82 0.01 0.80 0.02

0.6644 0.9935 0.6705 0.9919



 

37 

 

Appendix 7: Autoregressive lag order selection criteria for the ARDL model with EPOP as 

a dependent variable and LLP and LRW as independent variables 

 

Notes: * Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at a 5% level). FPE: Final 

prediction error. AIC: Akaike information criterion. BIC: Bayesian information criterion. HQ: Hannan-Quinn information criterion.  

Endogenous variable: EPOP. Exogenous variables: constant, LLP, and LRW. 

 

 

 

Appendix 8: Short run ARLD model with ΔEPOP as the dependent  

variable and three lags for each independent variable 

 
Notes: *** p < 0.01, ** p < 0.05, * p < 0.10.  Standard errors in parenthesis 

 

 

 

 

 

 

 

 

 Lag LogL LR FPE AIC BIC HQ

0 -4344.74 NA 32.6588 6.3240 6.3354 6.3283

1 -1468.33 5736.09 0.4984 2.1416 2.1568 2.1473

2 -1276.61 382.06 0.3777 1.8642 1.8832 1.8713

3 -1269.97   13.21*   0.3746*   1.8560*   1.8788*   1.8645*

4 -1269.19 1.56 0.3747 1.8563 1.8829 1.8662

5 -1269.18 0.01 0.3753 1.8577 1.8881 1.8691

Variable Coefficient

0.5252***

(0.0269)

-0.0610**

(0.0305)

-0.0182

(0.0270)

3.9186***

(0.8496)

1.8318**

(0.8587)

1.4271*

(0.8558)

-2.3926***

(0.9072)

-2.9923***

(0.9054)

-1.7899**

(0.9027)

0.0754***

(0.0225)

Δ LLP t-1

Δ EPOP t-3

Δ EPOP t-2

Δ EPOP t-1

Δ LLP t-2

Constant

Δ LRW t-3

Δ LRW t-2

Δ LRW t-1

Δ LLP t-3
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Appendix 9: Redundant variable test for  

 
 Note: Null hypothesis: = 0 

 

 

 

Appendix 10: Wald tests for the short run ARDL model for LLP, LRW, and EPOP 

 

 

 

Appendix 11: LR test for binding restriction in the VECM 

 
 

 

 

 

 

 

 

 

 

 

 

 

Value df Prob.

t - statistic 0.67 1390 0.5017

F - statistic 0.45 (1, 1390) 0.5017

Likelihood ratio 0.45 1 0.5000

F - test summary: Sum of Sq. df Mean Squares

Test SSR 0.16 1 0.1635

Restricted SSR 503.46 1391 0.3619

Unrestricted SSR 503.30 1390 0.3621

LR test summary Value

Restricted LogL -1270.61

Unrestricted LogL -1270.38

Null hypothesis: ΔLLPt-1 = ΔLLPt-2 = ΔLLPt-3 = 0

Test Statistic Value df Prob.

F - statistic 10.7769 (3, 1391) 0.0001

Chi - square 32.3308 3 0.0001

Null hypothesis: ΔLRWt-1 = ΔLRWt-2 = ΔLRWt-3 = 0

Test Statistic Value df Prob.

F - statistic 9.3277 (3, 1391) 0.0001

Chi - square 27.9831 3 0.0001

Null hypothesis: ECT 
EPOP

= 0

Test Statistic Value df Prob.

Chi - square 0.8438 1 0.3583
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Appendix 12: VECM residual serial correlation LM tests 

 
* Edgeworth expansion corrected likelihood ratio statistic. 

 

 

 

 

Appendix 13: VECM residual Portmanteau tests for autocorrelations 

 
Notes: Null hypothesis is “No residual autocorrelations up to lag h.” *Test is valid only for lags larger than the VEC lag order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Null hypothesis: No serial correlation at lag h

 Lag LRE* stat df Prob. Rao F-stat df Prob.

1 4.3998 9 0.8832 0.4887 (9, 3232.2) 0.8832

2 16.4024 9 0.0589 1.8251 (9, 3232.2) 0.0589

3 7.0309 9 0.6339 0.7812 (9, 3232.2) 0.6339

4 16.5175 9 0.0568 1.8380 (9, 3232.2) 0.0568

5 4.7928 9 0.8520 0.5324 (9, 3232.2) 0.8520

Null hypothesis: No serial correlation at lags 1 to h

 Lag LRE* stat df Prob. Rao F-stat df Prob.

1 4.3998 9 0.8832 0.4887 (9, 3232.2) 0.8832

2 20.5481 18 0.3028 1.1423 (18, 3748.2) 0.3028

3 29.8735 27 0.3199 1.1071 (27, 3861.6) 0.3199

4 44.1189 36 0.1659 1.2271 (36, 3897.9) 0.1659

5 46.1669 45 0.4238 1.0263 (45, 3910.3) 0.4238

Lags Q-Stat Prob.* Adj Q-Stat Prob.* df

1 0.04 - 0.04 - -

2 0.56 - 0.56 - -

3 0.87 - 0.87 - -

4 1.85 - 1.85 - -

5 2.67 - 2.68 - -

6 18.09 0.2028 18.16 0.1994 14

7 26.21 0.2909 26.33 0.2855 23

8 34.35 0.3556 34.52 0.3482 32
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Appendix 14: Panel VECM for ΔLLP, ΔLRW, and ΔEPOP as dependent variables 

 
Notes: *** p-value < 0.01, ** p-value < 0.05. Standard errors in parentheses. 

 

 

Appendix 15: Wald tests for the short run effects in the panel VECM 

 

 

 

 

0.4601** 2.1881*** -

(0.2046) (0.4558) -

-0.0340** -0.0742** -

(0.0147) (0.0302) -

-0.0113*** -0.0053*** 0.0000

(0.0017) (0.0007) (0.0000)

-0.0569 0.0045 3.8805***

(0.0580) (0.0503) (0.8538)

0.1232** 0.0679 1.8838**

(0.0585) (0.0511) (0.8676)

0.0565 0.0786 1.3437

(0.0596) (0.0522) (0.8860)

-0.1739*** 0.1232** 1.3342

(0.0597) (0.0525) (0.8917)

-0.0866 0.1162** 0.8417

(0.0632) (0.0564) (0.9576)

-0.0010 0.0040** -2.0954**

(0.0017) (0.0016) (0.9179)

-0.0045** -0.0049*** -2.7031***

(0.0020) (0.0019) (0.9246)

-0.0010 -0.0017 -1.2699

(0.0020) (0.0019) (0.9423)

-0.0002 0.0005 -3.4080***

(0.0019) (0.0018) (0.9438)

0.0005 0.0012 -0.9219

(0.0017) (0.0016) (0.9991)

0.0169*** 0.0129*** 0.0987***

(0.0016) (0.0015) (0.0257)

ΔLRW t-4

ΔLRW t-3

ΔLRW t-2

ΔLRW t-1

ECT

Short-run

ECT

ΔLLP t-1

ΔLLP t-2

ΔLLP t-3

Constant

ΔEPOP t-4

ΔEPOP t-3

ΔEPOP t-2

ΔEPOP t-1

LLP

LRW

∆LLP ∆LRW ∆EPOP

EPOP

LRW LLP

EPOP

Long-run

Constant

ECT

ΔLLP t-1

ΔLLP t-2

ΔLLP t-3

ΔLLP t-4

ΔLRW t-1

ΔLRW t-2

ΔLRW t-3

ΔLRW t-4

Constant

ΔLLP t-4

ΔEPOP t-1

ΔEPOP t-2

ΔLRW t-5 ΔLLP t-5 ΔLLP t-5

ΔEPOP t-5 ΔEPOP t-5 ΔLRW t-5

ΔEPOP t-3

ΔEPOP t-4

Null hypothesis Dependent variable χ
2

df = 5 Prob.

ΔLRWt-1 = ΔLRWt-2 = ΔLRWt-3 = ΔLRWt-4 = ΔLRWt-5 = 0 ΔLLP 19.0447 0.0019

ΔEPOPt-1 = ΔEPOPt-2 = ΔEPOPt-3 = ΔEPOPt-4 = ΔEPOPt-5 = 0 ΔLLP 13.6959 0.0177

ΔLLPt-1 = ΔLLPt-2 = ΔLLPt-3 = ΔLLPt-4 = ΔLLPt-5 = 0 ΔLRW 15.4008 0.0088

ΔEPOPt-1 = ΔEPOPt-2 = ΔEPOPt-3 = ΔEPOPt-4 = ΔEPOPt-5 = 0 ΔLRW 14.6453 0.0120

ΔLLPt-1 = ΔLLPt-2 = ΔLLPt-3 = ΔLLPt-4 = ΔLLPt-5 = 0 ΔEPOP 32.9368 0.0001

ΔLRWt-1 = ΔLRWt-2 = ΔLRWt-3 = ΔLRWt-4 = ΔLRWt-5 = 0 ΔEPOP 33.8622 0.0001
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Appendix 16: Roots of the characteristic polynomial 

 
    Notes: VECM imposes two unit-roots. 

    Endogenous variables: LLP, LRW, and EPOP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Root Modulus

1.0000 1.0000

1.0000 1.0000

0.9737 0.9737

0.7086 0.7086

0.6125 - 0.2501 i 0.6616

0.6125 + 0.2501 i 0.6616

0.1825 + 0.6001 i 0.6273

0.1825 - 0.6001 i 0.6273

0.3705 - 0.4880 i 0.6127

0.3705 + 0.4880 i 0.6127

-0.4436 + 0.3754 i 0.5812

-0.4436 - 0.3754 i 0.5812

-0.1228 - 0.5543 i 0.5677

-0.1228 + 0.5543 i 0.5677

-0.5062 0.5062

-0.3303 - 0.3183 i 0.4587

-0.3303 + 0.3184 i 0.4587

0.0217 0.0217
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Appendix 17: Construction of the labor productivity per hour worked at constant 2017 purchasing 

power parity (LPH), and average real wage per hour worked at constant 2017 purchasing power 

parity (RWH)   

 

• Labor productivity per hour worked at constant 2017 purchasing power parity (LPH) 

 

 

• Average real wage per hour worked at constant 2017 purchasing power parity (RWH) 

 

 

 

 

Where, 

rgdpo: Output-side real GDP at chained PPPs (in mil. 2017US$).  Output-side real GDP allows a 

comparison of productive capacity across countries and over time. 

labsh: Share of labor compensation in GDP at current national prices.  Reports the share represented by 

labor income in GDP in terms of the prices in that period (i.e., current prices). 

emp: Number of persons engaged (in millions). "Per person engaged" in PWT includes all persons aged 15 years 

and over, who during the reference week performed work, even just for one hour a week, or were not at work 

but had a job or business from which they were temporarily absent.  It includes self-employed persons. 

avh: Average annual hours worked by persons engaged. 

h:  Average annual hours worked  
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Appendix 18: Panel unit-root tests for LPH, RWH, and EPOP in levels and first differences 

 

Notes: The table shows the statistics and their p-values in parenthesis for each panel unit-root test and specification. The null hypothesis 

for the Breitung, Harris-Tsavalis, and Levin-Lin-Chu tests is that panels contain unit-roots, and their alternative hypothesis is that panels 

are stationary.  The null hypothesis for the Fisher-type tests is that all panels contain unit-roots, and their alternative hypothesis is that at 

least one panel is stationary. The null hypothesis for the Im-Pesaran-Shin test is that all panels contain unit-roots, and their alternative 

hypothesis is that some panels are stationary. I choose the optimal lags for the Im-Pesaran-Shin, and the Levin-Lin-Chu tests based on 

the Bayesian information criterion. Operator Δ before the name of the variables denotes that the variable is expressed in first-differences. 

 

 

 

Appendix 19: Pedroni's panel cointegration test for LPH, RWH, and EPOP 

 
Notes: The null hypothesis is "no cointegration." The weighted and unweighted panel statistics' alternative hypothesis is "cointegration 

in all panels with common autoregressive coefficients in the residuals.".  The group statistics' alternative hypothesis is "cointegration 

in a subset of panels with panel-specific autoregressive coefficients in the residuals."  The deterministic specification includes a constant 

in the test equation and no deterministic trend. The optimal number of lags is chosen based on the Bayesian information criterion.  The 

Bartlett kernel is selected as a spectral estimation method with a bandwidth set by the Newey-West procedure. Use degree-of-freedom 

corrected Dickey-Fuller residual variances. 

 

Panel unit-root test Specification LPH RWH EPOP  ∆LPH  ∆RWH  ∆EPOP

z'it = 1 16.52 16.03 6.63 -13.72*** -13.08*** -13.64***

z'it = 0 18.43 17.94 7.56 -16.18*** -15.98*** -15.48***

z'it = (1, t) 3.82 3.82 2.20 -16.74*** -15.32*** -12.81***

Inv. χ
2
, ADF 4.81 3.50 33.36 56.70 69.92** 74.82**

Inv. normal, ADF 7.85 9.12 2.52 -1.02 -2.54*** -3.30***

Inv. logit t, ADF 8.24 9.84 2.50 -1.02 -2.44*** -3.10***

Modified inv. χ
2
, ADF -4.52 -4.65 -1.66 0.67 1.99** 2.48***

z'it = 1 1.00 1.00 0.99 0.11*** 0.13*** 0.45***

z'it = 0 1.02 1.02 1.00 0.40*** 0.40*** 0.50***

z'it = (1, t) 0.92 0.90 0.91 0.17*** 0.18*** 0.47***

z'it = 1 8.73 8.48 0.93 -23.88*** -22.80*** -16.57***

z'it = (1, t) 0.62 -0.10 -3.53*** -23.58*** -22.20*** -14.47***

z'it = 0, unadjusted t 21.57 18.80 5.50 -18.24*** -18.86*** -19.66***

z'it = 0, adjusted t 21.24 18.52 5.42 -17.98*** -18.58*** -19.37***

z'it = (1, t) -0.38 -1.93** -5.03*** -23.69*** -22.92*** -15.12***

Levin-Lin-Chu

Breitung

Fisher

Harris-Tsavalis

Im-Pesaran-Shin

Statistic Prob. Statistic Prob. Statistic Prob.

Weighted panel statistics

     v-statistic 1.93 0.0267 2.42 0.0077 0.33 0.3715

     rho-statistic -1.07 0.1414 -1.22 0.1115 1.31 0.9050

     PP-statistic -1.56 0.0598 -2.07 0.0192 0.72 0.7644

     ADF-statistic -3.59 0.0002 -3.90 0.0001 -1.44 0.0753

Unweighted panel statistics

     v-statistic 2.33 0.0098 2.49 0.0064 0.09 0.4632

     rho-statistic 1.95 0.9745 -0.52 0.2680 0.93 0.8238

     PP-statistic 3.46 0.9997 -0.45 0.3262 0.22 0.5854

     ADF-statistic -1.46 0.0728 -2.12 0.0170 -1.45 0.0739

Group statistics

     rho-statistic 0.34 0.6325 0.16 0.5621 2.47 0.9932

     PP-statistic -1.75 0.0402 -1.21 0.1138 1.41 0.9201

     ADF-statistic -2.98 0.0014 -2.69 0.0036 -2.50 0.0063

Dependent variable

LPH RWH EPOP
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Appendix 20: Westerlund's panel cointegration test for LPH, RWH, and EPOP 

 
Notes: The null hypothesis is "no cointegration."   The demeaned, some, and trend panel statistics' alternative hypothesis is "some 

panels are cointegrated."  The all panels' alternative hypothesis is "all panels are cointegrated." 

 

 

 

 

Appendix 21: Model selection criterion for the ECMs for  

LPH and RWH as dependent variables 

 
   Note: BIC: Bayesian information criterion. 

 

 

 

 

 

Statistic Prob. Statistic Prob. Statistic Prob.

   Demean -0.31 0.3771 -1.11 0.1337 0.48 0.3172

   Some -3.28 0.0005 -3.45 0.0003 -1.83 0.0335

   Trend -1.00 0.1575 -1.70 0.0447 1.26 0.1043

   All panels -2.53 0.0057 -2.27 0.0115 -0.87 0.1922

Dependent variable

LPH RWH EPOP

BIC Specification BIC Specification

2.6041 (1, 1, 1) 1.3367 (1, 1, 1)

2.7164 (2, 1, 1) 1.4124 (2, 1, 1)

2.7213 (1, 2, 2) 1.4838 (1, 2, 2)

2.8184 (2, 2, 2) 1.5316 (3, 1, 1)

2.8218 (3, 1, 1) 1.5812 (2, 2, 2)

2.9170 (3, 2, 2) 1.6556 (4, 1, 1)

2.9489 (4, 1, 1) 1.6888 (3, 2, 2)

2.9605 (1, 3, 3) 1.7386 (1, 3, 3)

3.0324 (5, 1, 1) 1.7424 (5, 1, 1)

3.0332 (4, 2, 2) 1.8089 (4, 2, 2)

3.0496 (2, 3, 3) 1.8262 (2, 3, 3)

3.1173 (5, 2, 2) 1.8959 (5, 2, 2)

3.1778 (3, 3, 3) 1.9536 (3, 3, 3)

3.2203 (1, 4, 4) 1.9926 (1, 4, 4)

3.2966 (4, 3, 3) 2.0702 (2, 4, 4)

3.2998 (2, 4, 4) 2.0721 (4, 3, 3)

3.3732 (5, 3, 3) 2.1562 (5, 3, 3)

3.4116 (1, 5, 5) 2.1921 (3, 4, 4)

3.4303 (3, 4, 4) 2.2060 (1, 5, 5)

3.4870 (2, 5, 5) 2.2768 (4, 4, 4)

3.5148 (4, 4, 4) 2.2841 (2, 5, 5)

3.5780 (5, 4, 4) 2.3659 (5, 4, 4)

3.6178 (3, 5, 5) 2.4182 (3, 5, 5)

3.7063 (4, 5, 5) 2.5029 (4, 5, 5)

3.7922 (5, 5, 5) 2.6059 (5, 5, 5)

Dependent variable: LPH Dependent variable: RWH
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Appendix 22: Autoregressive lag order selection criteria for the ARDL model with EPOP as 

a dependent variable and LPH and RWH as independent variables 

 
Notes: * Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at a 5% level). FPE: Final 

prediction error. AIC: Akaike information criterion. BIC: Bayesian information criterion. HQ: Hannan-Quinn information criterion.  

Endogenous variable: EPOP. Exogenous variables: constant, LPH, and RWH. 

 

 

 

 

Appendix 23: Wald tests for the short run ARDL model for LPH, RWH, and EPOP 

 

 Lag LogL LR FPE AIC BIC HQ

0 -3604.40 NA 35.7046 6.4132 6.4266 6.4182

1 -1252.36 4687.35 0.5464 2.2335 2.2514 2.2403

2 -1092.34 318.62 0.4119 1.9508 1.9732 1.9593

3 -1086.14   12.34* 0.4081 1.9416   1.9684*   1.9517*

4 -1084.71 2.84   0.4078*   1.9408* 1.9721 1.9526

5 -1084.50 0.42 0.4083 1.9422 1.9780 1.9557

Null hypothesis: ΔLPHt-1 = ΔLPHt-2 = ΔLPHt-3 = 0

Test Statistic Value df Prob.

F - statistic 7.7376 (3, 1140) 0.0001

Chi - square 23.2127 3 0.0001

Null hypothesis: ΔRWHt-1 = ΔRWHt-2 = ΔRWHt-3 = 0

Test Statistic Value df Prob.

F - statistic 7.0784 (3, 1140) 0.0001

Chi - square 21.2351 3 0.0001


