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Abstract

We develop a Supermultiplier model where debt-financed household autonomous consumption
drives growth. However, instead of taking autonomous consumption growth as exogenous, we
assume that households’ debt service ratio partially determines it. We define a consumption
function that allows for (i) households’ demand for credit to depend on the burden interest
payments have on their income; and (ii) credit conditions to affect the pace of household
expenditures. The model has two equilibria, with the steady state one (two) combining a lower
(higher) household debt ratio with a higher (lower) growth rate. However, only one equilibrium
(steady state one) is locally stable for the chosen set of parameters. The system converges to
this first steady state when departing from outside of equilibrium. Real and financial variables
affect the steady state growth path in the model. The wage share has a positive effect, while the
interest rate has a negative effect on growth.

Keywords: demand-led growth, Supermultiplier, household debt, consumption, endogenous
autonomous demand

JEL classification codes: B50, C61, E11, G51, O41

1 Introduction

It is now widely documented that there has been a secular deterioration of income distribution in the
US and other advanced economies (Atkinson et al., 2011; Piketty & Saez, 2003; van Treeck, 2014).
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It has also been argued that as income inequality worsened throughout the 20th century, household
indebtedness increased to avoid consumption stagnation, especially in Anglo-Saxon economies
(Kumhof et al., 2015; Kumhof et al., 2012; Rajan, 2010; van Treeck, 2014). As a consequence of
these observations, more recently, the issue of household debt dynamics has been emphasized in
both mainstream and heterodox macroeconomics.

In the heterodox literature, several demand-led growth models incorporate household debt
dynamics (e.g., Dutt, 2005, 2006; Fagundes, 2017; Hein, 2012a; Pariboni, 2016; Setterfield and
Kim, 2017, 2020 among others). Some of these works employ the stock-flow consistent (SFC)
approach (e.g., Byrialsen and Raza, 2020; Caverzasi and Godin, 2015; van Treeck, 2009, among
others). Meanwhile, the mainstream approach mainly explains some of these patterns through a
general equilibrium framework (e.g., Mian et al., 2017, 2021).

Most of the heterodox literature on credit-financed household consumption can be divided into
the neo-Kaleckian approach (see Dutt, 2005, 2006; Hein, 2012a; Setterfield and Kim, 2017, 2020)
and, more recently, the Supermultiplier approach (see Avritzer, 2021; Fagundes, 2017; Mandarino et
al., 2020; Pariboni, 2016). While in the usual neo-Kaleckian framework, credit-driven consumption
is endogenous and induced by income, this is not the case in the Supermultiplier approach, which
assumes (the pace of) credit-financed consumption of workers to be autonomous and exogenously
given.

In general, Supermultiplier models assume that the non-capacity creating autonomous com-
ponents of demand, such as government expenditures, household consumption out of credit, or
capitalists consumption, that lead growth in the long run, grow at an exogenously given rate (Allain,
2015; Freitas & Serrano, 2015; Lavoie, 2016).1

However, a few exceptions formally deal with “semi-autonomous” (Fiebiger & Lavoie, 2017)
or endogenous autonomous expenditures. In Brochier and Macedo e Silva (2019) and Brochier
(2020), household consumption out of wealth is the semi-autonomous component of demand that
makes the economy’s growth rate endogenous to the model. Ferri and Tramontana (2020) consider
that the pace of durable consumption is semi-autonomous since its growth rate depends on an
exogenous component and partially on the unemployment rate. Caminati and Sordi (2019) and
Nomaler et al. (2021) also build a Supermultiplier model where autonomous expenditures grow
endogenously. They both assume the pace of R&D investment and part of consumption to be au-
tonomous.2Fiebiger (2021) also proposes a Supermultiplier model where government expenditures
are semi-autonomous. At last, Allain (2022) also analyses the dynamics of (two) semi-autonomous
demand components in a Supermultiplier model.

1To be fair, there are growth models in the neo-Kaleckian tradition that assume consumption and (or) government
expenditures to be autonomous, such as Godley and Lavoie (2007). The same goes for the growth models in the
neo-Kaleckian approach that follow the supermuliplier mechanism such as Allain (2015) and Lavoie (2016).

2In both, the pace of R&D investment is partially endogenous, while the pace of autonomous consumption (capitalist
consumption that grows in line with productivity in Caminati and Sordi (2019); and workers’ consumption out of wealth
in Nomaler et al. (2021)) is fully endogenous.
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We contribute to this literature by explicitly providing an initial closure for a semi-autonomous
growth rate. We assume credit-financed consumption can be understood as semi-autonomous3,
tackling potential determinants of the pace of household credit demand for consumption. By
doing that, we integrate the post-Keynesian literature concerned with household credit demand
determinants (Dutt, 2006; Hein, 2012b; Setterfield & Kim, 2016) and the Supermultiplier literature,
which deals with autonomous household consumption as one of the potential growth drivers (Freitas
& Serrano, 2015; Lavoie, 2016; Pariboni, 2016).

The objectives of this exercise are threefold: (i) to analyze the stability and equilibrium properties
of a semi-autonomous growth Supermultiplier model; (ii) to provide a reasonable channel through
which real and financial variables may affect the long run growth path; and (iii) to explore how
these variables affect household debt ratio, the growth rate, and firms’ propensity to invest. To
achieve these goals, we derive the steady state solution for a semi-autonomous growth model where
credit-financed consumption drives economic growth.

More precisely, following Dutt (2006) and van Treeck (2009), we assume that the debt burden
negatively affects households’ demand for consumer credit. As a result, the credit-financed con-
sumption growth rate becomes a semi-autonomous component of demand, negatively impacted by
the interest rate and positively impacted by the wage share.4 Once we solve the model for the steady
state growth path and find two equilibria, of which only one is stable, we demonstrate that income
distribution positively affects growth. In contrast, financial variables, such as the interest rate or
households’ sensitivity to their debt burden, have a negative effect.

Beyond this introduction, the paper is divided into four sections as follows. Section 2 presents
the model, the short run equilibrium, the analytical steady state solution and discusses the model’s
local stability conditions. Section 3 presents a numerical illustration of the model in which we
analyze both steady state solutions and their stability using a chosen set of parameters’ values.
Section 4 discusses the relevant derivatives of the steady state equilibrium that was found to be
stable. Section 5 concludes.

2 A credit driven household consumption model

The model deals with a pure credit closed economy with no inflation and without a government
composed of three institutional sectors: households, banks, and firms. Following the post-Keynesian
literature (see Dutt, 2005, 2006; Hein, 2012b; Setterfield and Kim, 2016, 2017, 2020 among others),
we further divide the household sector into two groups - workers and rentiers. Rentier households
buy all the equities (𝑒) issued by firms and hold the rest of their wealth as deposits (𝑀𝑟) at banks.
Worker households take on loans (𝐿𝑤) to consume. Since workers do not consume all their after-

3See, for instance, the pieces of evidence provided by Fasianos and Lydon (2022) and Fiebiger and Lavoie (2017).
4See Fasianos and Lydon (2022) and Stockhammer and Wildauer (2018) for some empirical work on this.
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interest wage income, they accumulate wealth as deposits (𝑀𝑤) at banks (the only asset they hold).
Banks give out loans to worker households and take on household deposits. Firms produce a
homogeneous good that is used both for consumption (𝐶) and investment (𝐼) purposes. They also
issue equities to households to finance the part of investment not covered by retained earnings.

Tables 1 and 2 detail the balance sheet and the transactions and flow of funds of the institutional
sectors, respectively.

Table 1: Balance sheet matrix

Households Firms Banks TotalWorkers Rentiers
Deposits +𝑀𝑤 +𝑀𝑟 −𝑀 0
Equities +𝑒𝑝𝑒 −𝑒𝑝𝑒 0
Loans −𝐿𝑤 +𝐿𝑤 0

Firm’s Capital 𝐾 𝐾

Total 𝑉𝑤 𝑉𝑟 𝑉 𝑓 0 𝐾

Table 2: Transaction flow matrix

Households Firms Banks TotalWorkers Rentiers Current Capital Current Capital
Consumption −𝐶𝑤 −𝐶𝑟 +𝐶 0

Firms’ Investment +𝐼 −𝐼 0
Wages +𝑊 −𝑊 0

Firm’s Profits +𝐹𝐷 −(𝐹𝐷 + 𝐹𝑈) +𝐹𝑈 0
Bank’s Profits +𝐹𝐵 −𝐹𝐵 0

Interest on Loans −𝑖𝑙𝐿𝑤 +𝑖𝑙𝐿𝑤 0
Interest on Deposits +𝑖𝑚𝑀𝑤 +𝑖𝑚𝑀𝑟 −𝑖𝑚𝑀 0

Change in Loans + ¤𝐿𝑤 − ¤𝐿𝑤 0
Change in Deposits − ¤𝑀𝑤 − ¤𝑀𝑟 + ¤𝑀 0

Change in Equity issues −𝑝𝑒 ¤𝑒 +𝑝𝑒 ¤𝑒 0
Total 0 0 0 0 0 0 0

In what follows, we describe the behavior of all aggregate demand components, focusing on
credit-financed workers’ consumption.5

2.1 Aggregate demand behavior

2.1.1 Workers’ consumption

Following the Supermultiplier literature, as in Fagundes (2017) and Pariboni (2016), we assume
that workers take on new loans ( ¤𝐿𝑤) to finance autonomous consumption (𝑍) (equation 1). We

5See Appendix A for the model’s full set of equations.
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also assume that this autonomous component of demand grows at a rate 𝑔𝑧 (equation 2). For
simplification purposes, we abstract from household debt amortization.6

¤𝐿𝑤 = 𝑍 (1)

𝑍 = 𝑍0𝑒
𝑔𝑧 𝑡 (2)

However, instead of taking the growth of debt-financed consumption as exogenously given, we
suppose that the pace of household consumption out of credit is partially endogenous to the model
or semi-autonomous, as coined by Fiebiger and Lavoie (2017).7 More precisely, we assume it
depends positively on autonomous factors (𝜑0) and negatively on the debt service to workers’
income ratio (𝑑𝑠):

𝑔𝑧 = 𝜑0 − 𝜑1𝑑𝑠 (3)

Where 𝜑1 depicts how sensitive household credit demand for consumption is to the debt service
and the credit conditions as represented by the interest rate on loans. The debt service ratio is given
by equation 4.

𝑑𝑠 =
𝑖𝑙𝐿𝑤

𝑊
=
𝑖𝑙𝐿𝑤

𝑤𝑌
(4)

Where 𝐿𝑤 is workers’ accumulated debt, 𝑖𝑙 is the interest rate on workers’ loans, 𝑌 is total income,
and 𝑤 is the wage share.8 Substituting 4 into 3, we arrive at equation 5:

𝑔𝑧 = 𝜑0 −
𝜑1𝑖𝑙 𝑙𝑤

𝑤
(5)

Where 𝑙𝑤 =
𝐿𝑤
𝑌

is the total loans to output ratio.
One may wonder why the pace of credit-financed consumption would react to the burden of

debt. The reasoning of previous work on credit-financed consumption may justify this specification
for the growth rate of autonomous household consumption. Bhaduri et al. (2006) and van Treeck
(2009) among others, claim that households’ burden of debt, as it reduces their creditworthiness,
may reduce their ability to take out loans. Besides, it may deteriorate the credit conditions (Isaac &
Kim, 2013). Dutt (2006) also shows evidence that the debtors take out fewer loans, the higher their
indebtedness. More recently, Fasianos and Lydon (2022) show that indebted households reduce
consumption when their income falls. And Stockhammer and Wildauer (2018) also provide some
evidence for low interest rates boosting household credit.

6For Supermultiplier models that take household debt amortization into account see Fagundes (2017), Pariboni
(2016), and Pedrosa et al. (2022) .

7For more on the discussion of semi-autonomous or endogenous autonomous expenditures see Allain (2021),
Brochier and Macedo e Silva (2019), Fazzari et al. (2020), and Fiebiger and Lavoie (2017).

8Income distribution is exogenous in the model so that𝑤 = 1−𝜋. Where 𝜋 is the profit share. This is compatible with
neo-Kaleckian and Sraffian income distribution theories (Brochier & Freitas, 2022). For conflict theory of inflation
extended Supermultiplier models that deal with endogenous income distribution, see Brochier (2020) and Nah and
Lavoie (2019).
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Therefore, we consider that debt servicing (𝑑𝑠) may, on average, affect the pace of new credit
demand for consumption purposes (𝑔𝑧). As a result, the semi-autonomous demand component
becomes a function of financial variables – the interest rate and the debt ratio – and real variables –
the wage share.

As for the debt burden, we write it as a ratio of interest payments on loans to wages (instead
of disposable income) in a rough approximation to the Minskyan typology applied to households,
9where interests on loans represent workers’ cash commitments and wages their cash flow. As
highlighted by Setterfield and Kim (2020), for indebted households, the limit of Ponzi finance (as
applied to firms) is not feasible since households could not use all their income for debt servicing
and still provide for their subsistence. Therefore, we assume that, on average, the debt service ratio
is positive but lower than one (0 < 𝑑𝑠 < 1).

Besides credit-financed autonomous consumption, workers also consume a fraction (𝛼1) of their
disposable income (𝑌𝑑𝑤 ) (equation 6):

𝐶𝑤 = 𝛼1𝑌𝑑𝑤 + 𝑍 (6)

Where workers’ disposable income is given by the sum of their earnings from wages plus the
difference between what they receive as interest on deposits (𝑖𝑚𝑀𝑤) and pay as interest on loans
(𝑖𝑙𝐿𝑤) (equation 7):

𝑌𝑑𝑤 = 𝑊 + 𝑖𝑚𝑀𝑤 − 𝑖𝑙𝐿𝑤 (7)

In this version of the model, we will assume that deposits earn no interest (𝑖𝑚 = 0) for simplification
purposes. Nevertheless, this is a realistic assumption, interpreting these deposits as demand deposits.
That means workers’ disposable income will amount to wages net of interest payments on loans. It
also means that only rentiers earn financial income, as deposits are the only asset of workers.

2.1.2 Rentiers’ consumption

We assume that rentier households earn financial income accruing from firms’ distributed profits
(𝐹𝐷), banks’ profits (𝐹𝐵), and interest payments on deposits (equation 8). Since we initially assume
that banks pay no interest on deposits, rentiers’ disposable income will amount to total distributed
profits.

𝑌𝑑𝑟 = 𝐹𝐷 + 𝐹𝐵 + 𝑖𝑚𝑀𝑟 (8)

We assume that firms retain a fraction (𝑠 𝑓 ) of their total profit (𝜋𝑌 ) and distribute the rest of it to
rentiers (equation 9).

𝐹𝐷 = (1 − 𝑠 𝑓 )𝜋𝑌 (9)
9See Cynamon and Fazzari (2008) on this.
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In turn, banks profit from the interest differential of their assets and liabilities (equation 10) and
distribute all of it to rentiers.

𝐹𝐵 = 𝑖𝑙𝐿𝑤 − 𝑖𝑚𝑀 (10)

In this version (𝑖𝑚 = 0), banks’ profits will be equivalent to interests charged on loans ( 𝑖𝑙𝐿𝑤).
At last, rentier households consume a fraction of their disposable financial income (equation

11).
𝐶𝑟 = 𝛼2𝑌𝑑𝑟 (11)

2.1.3 Firms’ investment

As for firms’ investment, we assume it to be endogenously determined by current income (𝑌 ) and
firms’ marginal propensity to invest (ℎ )(equation 12). We also suppose, as in Freitas and Serrano
(2015), that firms adjust their investment behavior to the discrepancies between the actual (𝑢) and
the normal (𝑢𝑛) capacity utilization rate (equation 13). This provides a conditional solution for the
problem of Harrodian instability as highlighted by Allain (2015). 10

𝐼 = ℎ𝑌 = ¤𝐾 (12)

¤ℎ = ℎ𝛾(𝑢 − 𝑢𝑛) (13)

It follows from the assumptions in equations 12 and 13 that the rate of capital accumulation in this
economy will be a function of the marginal propensity to invest and the rate of capacity utilization,
both divided by the capital-output ratio, 𝑣 (equation 14):

𝑔𝑘 =
ℎ𝑢

𝑣
(14)

As should be clear from equations 12 and 14, we also abstract from capital depreciation.

2.2 Short-run equilibrium

By substituting the behavioral equations 6, 11, and 12 into the identity of supply and demand
(equation 15) and solving it for output, we obtain the short run goods’ market equilibrium level of
income (equation 16).

𝑌 = 𝐶𝑟 + 𝐶𝑤 + 𝐼 (15)

𝑌 =
𝑍 − [(𝛼1 − 𝛼2)𝑖𝑙]𝐿𝑤

(𝑠 − ℎ) (16)

10See Gahn (2021), Hein (2014), Hein et al. (2012), Setterfield and Avritzer (2020), and Skott (2010) for a review
on this debate. See also Gahn (2021) for an empirical study that finds evidence of a transitory effect on the capacity
utilization rate after an aggregate demand expansion episode.
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In equation 16 −(𝛼1 − 𝛼2)𝑖𝑙 represents the net effect on aggregate demand (and income) of the
interest payments on loans; and 𝑠 = 1 − 𝛼1𝑤 − 𝛼2(1 − 𝑠 𝑓 )𝜋 is the marginal propensity to save.11

Dividing both sides of equation 16 by the full capacity output level (𝑌 𝑓 𝑐 = 𝐾/𝑣), we then find
the short-run capacity utilization rate (𝑢):

𝑢 =
𝑣{[𝑔𝑙 − (𝛼1 − 𝛼2)𝑖𝑙]𝑙𝑘𝑤 }

(𝑠 − ℎ) (17)

Where 𝑔𝑙 =
¤𝐿𝑤
𝐿𝑤

=
𝑍

𝐿𝑤
is the loans growth rate; and 𝑙𝑘𝑤 =

𝐿𝑤

𝐾
is the worker’s loans to capital ratio.

We must emphasize that since both 𝑙𝑘𝑤 and 𝑔𝑙 have entered the equation that describes the short run
capacity utilization rate, they will both play a fundamental role in defining the long run steady state
dynamics of the model. 12.

Assuming the Keynesian stability condition holds in the model (𝑠 > ℎ), for having a positive
capacity utilization rate, the numerator of equation 17 has to be positive. Since 𝛼1 > 𝛼2, this will
be the case when 𝑔𝑙 > (𝛼1 − 𝛼2)𝑖𝑙 , that is, when the positive effect of autonomous consumption
(new credit) exceeds the negative effect interest payments on loans have on aggregate demand (as
they reduce workers’ disposable income and, therefore, induced consumption).13 Having presented
the short run capacity utilization rate and the key variables for analyzing the model, in section 2.3,
we present the main results of the steady state solution.

2.3 Steady state solution and dynamics

We defined the model and its critical behavioral assumptions in the previous section. Since the debt
to income ratio, 𝑙𝑤 (see equation 5), partially determines the credit-financed workers’ consumption
growth rate, we can write the key variables and ratios of the model as functions of 𝑙𝑤. Taking into
account that in the steady state growth path, we must have 𝑔𝑘 = 𝑔𝑦 = 𝑔𝑙 = 𝑔𝑧 and 𝑢 = 𝑢𝑛, the steady
state solution of the model is given by the following equation:

(𝑙∗𝑤)2 + 𝑏𝑙∗𝑤 + 𝑐 = 0 (18)

Where 𝑏 = 𝑣
𝑢𝑛

+ 𝑤
𝜑1𝑖𝑙

[𝑖𝑙 (𝛼1 − 𝛼2) − 𝜑0] and 𝑐 = 𝑤
𝜑1𝑖𝑙

[1 − 𝛼1𝑤 − 𝛼2(1 − 𝑠 𝑓 )𝜋 − 𝑣
𝑢𝑛
𝜑0]. As detailed

in Appendix C, the derivation of equation 18 is obtained by replacing the steady state equation for
the autonomous consumption to income ratio, derived from equation 16, as well as the steady state
result for the marginal propensity to invest, ℎ, defined in equations 12 - 13 in the original definition
of steady state growth (𝑔∗

𝑙
= 𝑔𝑧 = 𝜑0 − 𝜑1𝑖𝑙 𝑙

∗
𝑤

𝑤
). From equation 18, we know that the steady state

solution of the model is defined by two roots for the loans to income ratio. In other words, the
11The details of this derivation can be found in Appendix B.
12See section 2.3 for the steady state dynamics analysis.
13See Brochier and Freitas (2022) on this.
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model has two possible long run equilibria fully determined by the parameters describing its internal
dynamics. The immediate consequence of having credit-financed consumption as the autonomous,
yet endogenous, component of demand that drives growth in a Supermultiplier model is twofold:
(i) the steady state value of 𝑙𝑤 is fully described by a combination of the model’s core parameters;
(ii) the values for the debt to income ratio will fundamentally define the steady state solutions, and
its dynamics will explain all the other relevant variables. More precisely, for each 𝑙∗𝑤 the full steady
state solution of the model will be described by:

𝑔∗ = 𝑔∗𝑧 = 𝜑0 −
𝜑1𝑖𝑙 𝑙

∗
𝑤

𝑤
(19)

ℎ∗ =
𝑣𝑔∗𝑧
𝑢𝑛

=
𝑣

𝑢𝑛

(
𝜑0 −

𝜑1𝑖𝑙 𝑙
∗
𝑤

𝑤

)
(20)

Since we have arrived at a two-equilibria steady state solution, we must now look at the stability of the
dynamical system to determine which equilibrium is stable. The system describing the dynamics of
the model is composed of three differential equations (21). We start with the fundamental dynamic
equation of Supermultiplier models as described in equation 13, replace the short run capacity
utilization rate (equation 17), obtaining the first equation of the dynamical system (21). Since 𝑔𝑙
and 𝑙𝑘𝑤 appear in this first equation, we must also derive their dynamic behavior. In order to do so,
we depart from the very definition of the two variables and replace equation 14 (the rate of capital
accumulation) in the equation for ¤𝑙𝑘𝑤 and 5 (the rate of growth of autonomous consumption) in the
equation for ¤𝑔𝑙 .14

¤ℎ = ℎ𝛾(𝑢 − 𝑢𝑛) = ℎ𝛾
[ 𝑣(𝑔𝑙−(𝛼1−𝛼2)𝑖𝑙)𝑙𝑘𝑤

(𝑠−ℎ) − 𝑢𝑛
]

¤𝑙𝑘𝑤 = 𝑙𝑘𝑤 (𝑔𝑙 − 𝑔𝐾) = 𝑙𝑘𝑤
[
𝑔𝑙 − ℎ(𝑔𝑙−(𝛼1−𝛼2)𝑖𝑙)𝑙𝑘𝑤

(𝑠−ℎ)
]

¤𝑔𝑙 = 𝑔𝑙 (𝑔𝑧 − 𝑔𝑙) = 𝑔𝑙

[
𝜑0 − 𝜑1 𝑖𝑙𝑤

(𝑠−ℎ)
(𝑔𝑙−(𝛼1−𝛼2)𝑖𝑙) − 𝑔𝑙

] (21)

The dynamics of the marginal propensity to invest and the loans to capital ratio depend on the
same three variables: firms’ propensity to invest, ℎ; household debt growth rate, 𝑔𝑙 ; and household
debt to capital ratio, 𝑙𝑘𝑤 . As for the dynamics of household debt growth rate, it will only be affected
by itself and firms’ propensity to invest.

The analysis of the dynamical system described in 21 should allow us to understand whether or
not the model is dynamically stable, i.e., converges to any of the steady state solutions, or unstable,
if it does not converge to any of the two steady-state solutions described in equation 18.

We adopt two complementary procedures to address the stability of this non-linear three-
dimensional system. The first is to find the Routh-Hurwitz determinants of the Jacobian matrix
of the system. The second is to look at the dynamical system’s behavior through a numerical
simulation exercise, including the values of the Routh-Hurwitz determinants for each steady state.

14The details of these derivations can be found in Appendix D.

9



For the first approach, we look at the Jacobian matrix to study the asymptotical stability of the
two equilibrium solutions found in the previous section, using a linear approximation (Gandolfo,
2010, p.385). 15

It is worth noticing that the complexity of the model’s analytical solution thwarts an economic
interpretation of these stability conditions, except for the first Routh-Hurwitz condition, which easily
translates into a negative trace of the original Jacobian matrix evaluated at the steady state position.
16 It is nonetheless important to mention that a few parallels can be drawn with some of the results
found in Hein and Woodgate (2021). First, just as they have found an upper and lower limit for 𝑔∗𝑧
under a Supermultiplier model, we have found upper and lower limits on the autonomous demand
growth rate. Secondly, we notice from the conditions described that the stability of the steady-state
growth rate will depend on the Harrodian instability parameter (𝛾) and the interest rate. This result
is also similar to what is found in Hein and Woodgate (2021).17

3 Steady state analysis: numerical exercise

The numerical exercise proposed in this section aims at investigating (i) whether the system converges
to one of the two equilibria of the model; (ii) whether the two equilibria - or one or none – are locally
stable for a reasonable set of parameters by presenting the numerical values of the Routh-Hurwitz
determinant of both of them.

Table 3 presents the values used in the model’s calibration, which were calculated based on
relevant intervals for the US economy. The latter presents a good case for illustration of the model’s
properties since it has been widely argued – see Barba and Pivetti (2009) and Cynamon and Fazzari
(2008), for example – that credit-financed consumption has played an important role in boosting US
recent economic performance but also contributed to its financial instability. More recently, Góes
and Deleidi (2021) have also provided empirical evidence for the multiplier effect of autonomous
consumption on US economic growth. In table 4, we present the steady state results for all relevant
variables assuming the parameters’ values shown in table 3.

15The details of the derivation of the Routh-Hurwitz determinants and the derivations for the Jacobian evaluated
at the steady state can be found in Appendices E and F, respectively. See also Hein and Woodgate (2021), Nikolaidi
(2014), and Spinola (2020) for other applications of this.

16The details of the derivation of the trace of the Jacobian is left to Appendix G.
17See Morlin (2022) for an analysis on the upper limit external (financial) constraints can impose on the growth rate

in a Supermultiplier model and on how this limit may be avoided by managing autonomous government expenditures.
See also Pedrosa et al. (2022) for an analysis of how the different institutional sectors’ liabilities may affect the range of
values for 𝑔𝑧 compatible with a stable, steady state growth path.

10



Table 3: Calibration of the model

Parameter Value

𝛼1 0.9

𝛼2 0.6

𝑢𝑛 0.75

𝑖𝑙 0.02

𝜋 0.3

𝑣 2

𝜑0 0.075

𝜑1 0.05

𝑠 𝑓 0.4

𝛾 0.02

At this point, a few things are worth pointing out in the table 3. First, all of the values used in
this part of the paper have been chosen within a range of economically significant values calibrated
to produce steady state results that are also economically meaningful. More precisely, the chosen
values were controlled for a steady growth rate of the economy and household debt to income ratio
that would make economic sense for the US economy, respectively 0 < 𝑔∗ < 0.1 and 0 < 𝑙∗𝑤 < 1.

One can also notice that most of the values we have found fall within a range that is under
what is commonly adopted in the literature.18 One exception worth mentioning is the value for the
capital-output ratio, which is high but still falls within a range that makes sense economically.19 It
is important to mention this because 𝑣 was one of the buffer variables for calibrating the model’s
steady state.

Secondly, some of the parameters of the consumption and savings functions were taken from the
current literature on demand-led growth models. Following Setterfield and Kim (2020), we used
the consumption and savings parameters suggested by other authors.20 The exceptions were 𝜑0,
which was chosen so as to guarantee 𝑔𝑧 > 0, and 𝛼2, which was calibrated, once again, to guarantee
that steady state results made economic sense.

Finally, we have chosen a value for 𝛾 that guarantees steady state stability. As has been pointed
out by a few authors (Allain, 2015; Fazzari et al., 2020; Ferri & Tramontana, 2020; Freitas & Serrano,
2015; Hein & Woodgate, 2021; Lavoie, 2016), the Supermultiplier model and the modified neo-
Kaleckian model need firms’ reaction (through the propensity to invest or trend growth rate of sales)

18See for instance Setterfield and David Avritzer (2020), Haluska et al. (2021) and Gahn (2020) and their estimations
for the normal rate of capacity utilization.

19Some recent estimates show the capital-output ratio ranging from 0,8 to 1,5. See Fazzari et al. (2020) and Franke
(2017).

20van Treeck (2009) suggests 𝑏1 = 0.05 for one case of his analysis. The parameter 𝑏1 is analogous to 𝜑1 here.
Bunting (1998) also suggests a 𝛼1 close to what we use in the simulations
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to the gap between the actual and normal capacity utilization rates (𝛾 here) to be low enough to
prevent Harrodian instability. The results of this numerical exercise are presented in subsection
3.1.21

3.1 Results of the numerical exercise

Table 4: Steady State Results

Variables Steady state 1 Steady state 2

𝑙∗𝑤 0.971752 44.6616

𝑔∗ 0.0736118 0.0111977

𝑙∗
𝑘𝑤

0.364407 16.7481

ℎ∗ 0.196298 0.0298606

Local stability analysis (R-H Determinants)

Δ1(𝐽∗) > 0 < 0

Δ2(𝐽∗) > 0 > 0

Δ3(𝐽∗) > 0 < 0

In table 4, we observe that the steady state equilibrium solution for 𝑙∗𝑤 (18) results in two positive
real roots. More precisely, there is one steady state position characterized by a lower debt ratio (𝑙∗𝑤)
but a higher rate of growth of the economy (𝑔∗) (steady state one), and the other one by a high debt
ratio and lower growth rate (steady state two). Steady state one arrives at more reasonable results
for the combined growth rate and debt ratio values. Table 4 still reports steady state values for the
marginal propensity to invest (ℎ∗) and the debt to capital ratio (𝑙∗

𝑘𝑤
). Finally, table 4 shows that

steady state one is the only one with local stability besides making economic sense. The Routh
Hurwitz determinants of the two steady state positions reported at the bottom of table 4 attest this.

3.2 Reassessing the steady state stability of the model

Taking the features of steady state one into account, we further investigate its stability in this section.
Figure 1 shows what happens to the dynamical system when we start at an arbitrary point outside
the steady state equilibrium. The graphs present the simulation of the dynamical system described
in 21 starting at two different points: i) steady state one as described in table 4; ii) an arbitrary point
given by (ℎ, 𝑙𝑘𝑤 , 𝑔𝑙) = (0.1, 0.1, 0.1). The top-right graph shows the results for the debt growth rate

21The codes of the numerical exercise are available upon request. We used Wolfram Mathematica for the solution
and stability conditions. For the simulation of the steady state dynamics and the shocks in the parameters, we used the
packages sfcr and deSolve developed for R.
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𝑔𝑙 , the top-left for the debt to income ratio 𝑙𝑘𝑤 , and the bottom graph for the marginal propensity to
invest.

Figure 1: Steady state stability
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Debt to capital ratio, growth of workers debt and marginal propensity to invest results for 1000 iterations of
Euler’s approximation of the dynamical system (21) starting at steady state one (dashed line) and an arbitrary
point (full line).

The full black lines on the graphs represent what happens to the variables after 1000 iterations
of the dynamical starting from the arbitrary point. Meanwhile, the dashed lines represent what
happens to the variables after 1000 iterations of the same dynamical system, but now starting from
the stable steady state position (steady state one). As we can see, for all variables the dynamics
seem to converge to the steady state position in which the debt growth rate is around 0.074 (7.4%),
and the debt to capital ratio is around 0.36 (36%) – the values estimated for steady state one.

This illustration exercise confirms steady state one as the stable position of the dynamical system
described in 21. Besides, the numerical analysis has also allowed us to exclude steady state two
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as economically feasible (for this numerical set of parameters) since its value for the household
debt ratio is way too far from the values this ratio assumes in reality. That said, in section 4, we
further explore steady state one by looking at the numerical derivatives of this steady state solution
with respect to the main parameters of the model: the wage share, the interest rate, the exogenous
autonomous consumption and workers’ sensitivity to their debt burden.

4 Effects of the parameters on the stable steady state position

There remains to talk about the main economic features of the steady state growth path. For the
reasons stated in section 3, here we focus on steady state one, addressing the effects of the core
parameters on this steady state. We numerically solve (and analyze) the derivatives for the steady
state parameter values of table 3.

Table 5: Effects of the parameters on the steady state growth path

Parameters
Variables

𝑙∗𝑤 𝑔∗ ℎ∗

𝜑0 − + +

𝜑1 − − −

𝑤 − + +

𝑖𝑙 + − −

Notes: the plus and minus signs represent the signs of the numerical partial derivatives of the main variables of
the model in the state steady growth path (steady state one) with respect to the parameters presented in the first
column;
The values for the parameters employed to calculate the derivatives are the same presented in table 3.

The main variables of interest are the long run household debt to income ratio (𝑙∗𝑤), growth rate
(𝑔∗), and firms’ propensity to invest (ℎ∗). Therefore, we focus on the key parameters’ effects on
these variables. In turn, the key parameters are the exogenous component of household autonomous
consumption growth rate (𝜑0), the sensitivity of household autonomous consumption growth rate
to the debt service ratio (𝜑1), the wage share (𝑤), and the interest rate (𝑖𝑙). In table 5, we present
the signs of the derivatives for the equilibrium values of the household debt ratio (second column),
growth rate (third column), and firms’ propensity to invest (fourth column) with respect to the key
four parameters (first column).

As expected in the Supermultiplier model, the exogenous component of the autonomous con-
sumption growth rate has a negative effect on the household debt ratio in the long run. This
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happens since, cet. par., a faster pace of autonomous consumption will increase capacity utilization
in the short run, triggering firms’ reaction to adjust capacity to demand. As capital and output
grow temporarily faster than household credit demand, the household debt ratio will decrease in
the long run. Therefore, we notice that the paradox of debt, in the long run, is a result of the
model, as in canonical versions of the Supermultiplier model that assume there is only one source
of non-capacity creating autonomous expenditures (Allain, 2015; Brochier & Freitas, 2022; Freitas
& Serrano, 2015; Lavoie, 2016).22. However, we are aware that this is not a necessary result of the
Supermultiplier closure, as when there is more than one source of autonomous injections, a faster
pace of autonomous spending in one institutional sector will be associated with a higher debt ratio
for that respective sector (Freitas & Christianes, 2020; Pedrosa et al., 2022).

We notice that increasing households’ sensitivity to credit conditions contributes to a higher
household debt ratio in the long run. This happens since an increase in households’ sensitivity to
credit conditions would harm the pace of households’ credit demand and, therefore, the activity
level. As the slower consumption out of credit contributes to reducing the capacity utilization rate
and firms adjust their capacity utilization to the (presumably permanent) lower demand, the output
growth rate will fall to a larger extent than the initial fall in the autonomous demand growth rate.
Therefore, a higher (lower) sensitivity parameter will lead to a higher (lower) household debt ratio
in the long run.

An increase in the wage share reduces the household debt ratio in the long run, as it alleviates
households’ debt burden and further stimulates demand through induced consumption. At last, a
higher interest rate23 on loans will lead to a higher household debt ratio in the long run as it increases
households’ debt burden and puts a drag on aggregate demand since the net effect on households’
consumption will be negative as long as the propensity to consume out of wages is higher than the
one out of financial income.

Regarding the long run growth rate, the exogenous component of the credit-financed consump-
tion growth rate will positively affect growth since it represents precisely the autonomous factors
that may fasten the pace of household credit demand. About the sensitivity of growth to credit
conditions, the higher the households’ sensitivity to the average debt burden, the lower the long run
growth rate. As for the wage share, it has a mild positive effect on the growth rate. It stimulates
induced consumption and, therefore, may lead firms to perceive the higher pace of demand as
permanent, temporarily fastening the pace of accumulation. It also directly reduces workers’ debt
burden by increasing their share of total income. A higher interest rate unequivocally reduces the
growth rate in the long run as it increases the debt burden for any household leverage ratio but also
contributes to a higher household debt ratio in the long run.

22For more on this see Brochier and Freitas (2022).
23It is worth mentioning that as Hein and Woodgate (2021) pointed out, there is a limit to the interest rate increase

without the model losing stability. In the case of this model, this limit is related to how large is the exogenous component
of the consumption function, 𝜑0, and how small is workers’ sensitivity to their debt burden, 𝜑1.
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In what concerns firms’ investment behavior, a faster pace of credit-financed consumption
arising from autonomous and exogenous demand would lead to a higher propensity to invest in
the long run. This happens because firms will adjust their capacity utilization to the desired one,
which requires a permanently higher investment rate as the trend growth rate is also higher. In
turn, a higher sensitivity of autonomous consumption growth to credit conditions would have the
opposite effect on firms’ propensity to invest: it reduces the pace of credit-financed consumption
and the output growth rate, and as firms react to the lower trend of demand, the propensity to
invest decreases. A higher wage share reduces worker households’ debt burden and contributes to
a faster pace of credit-financed consumption in the long run. Once again, this requires a higher
propensity to invest as firms try to keep the capacity utilization around the desired level. At last,
the interest rate will negatively affect firms’ propensity to invest since it reduces the growth rate of
credit-financed consumption, and, thus, firms adjust their investment behavior downwards, keeping
capacity utilization compatible with the lower expected growth rate of sales.

At last, figure 2 illustrates the effects of decreasing the wage share (solid line) and increasing
the interest rate (dashed line) on the debt to capital ratio (top-left), on the workers’ debt growth rate
(top-right) and on the marginal propensity to invest (bottom).

In line with the derivatives of table 5, the graphs in figure 2 show that a decrease in the wage
share (from 0.7 to 0.4) increases the debt to capital ratio and decreases the workers’ debt growth rate
and firms’ propensity to invest, which are the same qualitative effects that an increase in the interest
rate (from 0.02 to 0.074) will have on these variables. These results are the direct consequence of
assuming a credit-financed consumption function as described by equations (1) - (4). These graphs
also illustrate that the dynamical system described in equation 21 will converge to new steady state
positions when parameters are changed within reasonable ranges.

The partial derivatives and the shocks to the wage share and interest rate highlight some of the
fundamental features of the model. First, changes in the wage share affect the economy’s growth
rate in the long run. Contrariwise to what has been argued in recent criticism of the Supermultiplier
(Nikiforos, 2018), income distribution may have permanent growth effects, affecting the trend and
not only the average growth rate. This was already pointed out in Brochier and Macedo e Silva
(2019). This is the case when the growth rate of autonomous expenditures is assumed to be partially
endogenous to the model or “semi-autonomous”.

Secondly, financial variables affect real spending decisions in the long run. This is captured
in the model by the debt service impact on the pace of worker households’ credit demand for
consumption. A worsening in credit conditions, as represented by an increase in the interest rate
and stronger reaction of credit demand for consumption to the burden of debt, could lower demand
and growth initially through consumption and, in a second moment, induce firms to cut back on
investment as they expect a sluggish level of activity, reducing their investment ratio.
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Figure 2: Effects of interest rate and wage share shocks
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5 Conclusion

Supermultiplier growth models usually present the autonomous demand component that drives
growth as exogenously determined. Most certainly for simplification purposes. That said, exploring
the determinants of autonomous demand within the model seems relevant to understand how
they affect growth. With that in mind, we presented a Supermultiplier growth model where
credit-financed household consumption is the autonomous demand component that drives growth.
However, instead of assuming an exogenous growth rate for this component, we consider it to be
partially determined by the financial burden that loans may impose on household consumption.

We have solved the model analytically and found two steady state equilibria. From the steady
state solution, we derived an important feature of the model: in the steady state, all of the relevant
variables - the growth rate and the marginal propensity to invest - become a function of the debt to
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income ratio. Therefore, understanding what happens to this ratio is fundamental to understanding
the long run dynamics of the model.

Due to the complex nature of the model’s analytical solution, further clarification of the model’s
properties – such as the stability conditions and the economic interpretation of the two equilibria
– required a numerical illustration. From the numerical exercise, we found that the steady state
solution with higher growth and lower debt ratio (steady state one) is compatible with local stability.
Besides seemingly less stable, the lower growth-high debt ratio steady state (steady state two) also
presents weaker economic meaning for the chosen set of parameters, as the household debt ratio is
far beyond what is observable in real economies.

We also looked at the relevant derivatives of the higher growth-lower debt ratio steady state
(steady state one). We emphasize two results of this final illustration: (i) income distribution may
have a permanent effect on the long run growth rate, as an increase in the wage share reduces the
debt to income ratio, increasing the economy’s growth rate; (ii) financial variables – such as the
interest rate and the sensitivity of workers to their debt burden – affect steady state variables. More
precisely, an increase in interest rates or households’ sensitivity to their debt burden decreases the
growth rate and the investment to output ratio in the long run.

These results show that the Supermultiplier model can account for the permanent effects of both
real and financial variables on the long run growth rate. This was made possible by combining an
autonomous demand-led growth model where credit-financed household consumption drives growth
but is partially explained by households’ reaction to their debt burden. This simple model produced
interesting insights and helped clarify important issues due to the modeling of semi-autonomous
expenditures.

However, we must keep in mind its very high level of abstraction. Representing real economies’
experiences meaningfully would require a much higher complexity of real and financial interactions.
As a next step in that direction, we intend to incorporate other institutional sectors, such as the
government, their spending behavior, and financial counterparts, in future research.
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Appendix A - Defining Equations

Worker households’ consumption function

𝐶𝑤 = 𝛼1𝑌𝑑𝑤 + 𝑍 (6)

𝑌𝑑𝑤 = 𝑊 + 𝑖𝑚𝑀𝑤 − 𝑖𝑙𝐿𝑤 (7)

¤𝐿𝑤 = 𝑍 (1)

𝑍 = 𝑍0𝑒
𝑔𝑧 𝑡 (2)

𝑔𝑧 = 𝜑0 − 𝜑1𝑑𝑠 (3)
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𝑉𝑤 = 𝑀𝑤 − 𝐿𝑤 (22)

Rentier households’ consumption function

𝐶𝑟 = 𝛼2𝑌𝑑𝑟 (11)

𝑌𝑑𝑟 = 𝐹𝐷 + 𝐹𝐵 + 𝑖𝑚𝑀𝑟 (l8)

𝑆𝑟 = 𝑌𝑑𝑟 − 𝐶𝑟 (23)

𝑉𝑟 = 𝑆𝑟 + 𝑒 ¤𝑝𝑒 (24)

𝑝𝑒 =
𝜆𝑉𝑟

𝑒
(25)

𝜆 = 𝜆0 − 𝑖𝑚 (26)

Firms’ equations

𝐼 = ℎ𝑌 = ¤𝐾 (12)

¤ℎ = ℎ𝛾(𝑢 − 𝑢𝑛) (13)

𝑝𝑒 ¤𝑒 = 𝐼 − 𝐹𝑈 (27)

𝐹𝑈 = 𝑠 𝑓 𝜋𝑌 (28)

𝐹𝐷 = (1 − 𝑠 𝑓 )𝜋𝑌 (9)

Banks: borrowing decisions

We assume, for simplicity of the analysis, that 𝑖𝑚 = 0 and that the interest rate on loans, 𝑖𝑙 is
determined by a mark up (𝜌𝑏) over an exogenous interest rate (𝑖) (as if defined by a monetary
authority) such that:

𝑖𝑙 = (1 + 𝜌𝑏)𝑖 (29)

Equation 30 is the redundant equation of our stock-flow consistent model:

𝑀 = 𝐿𝑤 (30)

𝐹𝐵 = 𝑖𝑙𝐿𝑤 − 𝑖𝑚𝑀 (10)

Appendix B - Short-run solution

𝑌 = 𝐶𝑤 + 𝐶𝑟 + 𝐼 (31)
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𝑌 = 𝛼1(𝑊 + 𝑖𝑚𝑀𝑤 − 𝑖𝑙𝐿𝑤) + 𝑍 + 𝛼2 [(1 − 𝑠 𝑓 )𝜋𝑌 + 𝑖𝑙𝐿𝑤 − 𝑖𝑚𝑀 + 𝑖𝑚𝑀𝑟] + ℎ𝑌 (32)

Assuming that 𝑖𝑚 = 0 and 𝑤 = (1 − 𝜋):

𝑌 = 𝛼1(𝑤𝑌 − 𝑖𝑙𝐿𝑤) + 𝑍 + 𝛼2((1 − 𝑠 𝑓 )𝜋𝑌 + 𝑖𝑙𝐿𝑤) + ℎ𝑌 (33)

And further defining 𝑠 = 1 − 𝛼1𝑤 − 𝛼2(1 − 𝑠 𝑓 )𝜋:

𝑌 (𝑠 − ℎ) = (𝛼2 − 𝛼1)𝑖𝑙𝐿𝑤 + 𝑍 (34)

Since it will be instrumental for deriving the steady state solution of the model, we also present the
short run autonomous consumption to output ratio (𝑧) (equation 35). Equation 35 is obtained by
dividing both sides of equation 16 by the output level and solving it for the autonomous consumption
ratio.

𝑧 = 𝑠 − ℎ − (𝛼2 − 𝛼1)𝑖𝑙 𝑙𝑤 (35)

Where 𝑧 = 𝑍
𝑌

is the autonomous consumption to income ratio.

Appendix C - Steady State Solution

Since under steady state we must have 𝑔𝑙 = 𝑔𝑧 this then results in:

𝑧∗

𝑙∗𝑤
= 𝜑0 − 𝜑1

𝑖𝑙

𝑤
𝑙∗𝑤 (36)

If we then assume that under steady state 𝑧 = 𝑧∗ and solve the equation above for 𝑙∗𝑤, we find that:

𝜑1𝑖𝑙 (𝑙∗𝑤)2 − 𝜑0𝑤𝑙∗𝑤 + 𝑧∗𝑤 = 0 (37)

From equation 12 we also have that:
ℎ∗ =

𝑣𝑔𝑧

𝑢𝑛
(38)

Replacing equation 3 into equation 38:

ℎ∗ =
𝑣

𝑢𝑛
𝜑0 −

𝑣

𝑢𝑛
𝜑1
𝑖𝑙

𝑤
𝑙∗𝑤 (39)

Defining 𝜑′0 =
𝑣

𝑢𝑛
𝜑0 and 𝜑′1 = − 𝑣

𝑢𝑛

𝑖𝑙

𝑤
𝜑1, we then have that:

ℎ∗ = 𝜑′0 + 𝜑
′
1𝑙

∗
𝑤 (40)
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From equation 35 we must have that:

𝑧∗ = 𝑠 − ℎ∗ − (𝛼2 − 𝛼1)𝑖𝑙 𝑙∗𝑤 (41)

Replacing equation 40 in the equation above we get that:

𝑧∗ = 𝑠 − 𝜑′0 − 𝜑
′
1𝑙

∗
𝑤 − (𝛼2 − 𝛼1)𝑖𝑙 𝑙∗𝑤 (42)

Defining 𝛽0 = 𝑠 − 𝜑′0 and 𝛽1 = 𝜑′1 + (𝛼2 − 𝛼1)𝑖𝑙 , we get that:

𝑧∗ = 𝛽0 − 𝛽1𝑙∗𝑤 (43)

We can also define 𝛼′0 =
𝜑0𝑤

𝜑1𝑖𝑙
and 𝛼′1 =

𝑤

𝜑1𝑖𝑙
and rewrite equation 37 as:

(𝑙∗𝑤)2 − 𝛼′0𝑙
∗
𝑤 + 𝛼′1𝑧

∗ = 0 (44)

Consequently, we have the following system of two equations and two variables:

𝑧∗ = 𝛽0 − 𝛽1𝑙∗𝑤
(𝑙∗𝑤)2 − 𝛼′0𝑙

∗
𝑤 + 𝛼′1𝑧

∗ = 0
(45)

To solve the system above we replace one equation into the other and we get:

(𝑙∗𝑤)2 − 𝛼′0𝑙
∗
𝑤 + 𝛼′1𝛽0 − 𝛼

′
1𝛽1𝑙

∗
𝑤 = 0 (46)

Defining 𝛽′1 = 𝛼
′
0 + 𝛼

′
1𝛽1 and rearranging, we get that:

(𝑙∗𝑤)2 − 𝛽′1𝑙
∗
𝑤 + 𝛼′1𝛽0 = 0 (47)

Where 𝛽′1 =
𝑤
𝜑1𝑖𝑙

(𝜑0 + (𝛼2 − 𝛼1)𝑖𝑙) − 𝑣
𝑢𝑛

and 𝛼′1𝛽0 =
𝑤
𝜑1𝑖𝑙

(𝑠 − 𝑣
𝑢𝑛
𝜑0), which can also be rewritten as:

(𝑙∗𝑤)2 + 𝑏𝑙∗𝑤 + 𝑐 = 0 (48)

Where 𝑏 = −𝛽′1 =
𝑣
𝑢𝑛

+ 𝑤
𝜑1𝑖𝑙

(𝑖𝑙 (𝛼1 − 𝛼2) − 𝜑0) and 𝑐 = 𝑤
𝜑1𝑖𝑙

(1 − 𝛼1𝑤 − 𝛼2(1 − 𝑠 𝑓 )𝜋 − 𝑣
𝑢𝑛
𝜑0)

𝑙∗𝑤 = −𝑏 ±
√︁
𝑏2 − 4𝑐 (49)

Substituting (49) into (5), we get the equilibrium growth rate:

𝑔∗ = 𝜑0 − 𝜑1
𝑖𝑙

𝑤

[
−𝑏 ±

√︁
𝑏2 − 4𝑐

]
(50)
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Where the long run growth rate for steady state one is:

𝑔∗1 = 𝜑0 − 𝜑1
𝑖𝑙

𝑤

[
−𝑏 −

√︁
𝑏2 − 4𝑐

]
(51)

And for steady state two is:
𝑔∗2 = 𝜑0 − 𝜑1

𝑖𝑙

𝑤

[
−𝑏 +

√︁
𝑏2 − 4𝑐

]
(52)

Appendix D - Steady State Dynamics Derivation

Given that:

¤ℎ = ℎ𝛾

[
𝑣 [𝑔𝑙 − (𝛼1 − 𝛼2)𝑖𝑙]𝑙𝑘𝑤

(𝑠 − ℎ) − 𝑢𝑛
]

(53)

First, we look for an equation to describe ¤𝑙𝑘𝑤 :

¤𝑙𝑘𝑤 =
¤𝐿𝑤
𝐿𝑤

𝐿𝑤

𝐾
− 𝐿𝑤

𝐾

¤𝐾
𝐾

(54)

¤𝑙𝑘𝑤 = 𝑙𝑘𝑤 (𝑔𝑙 − 𝑔𝐾) (55)

¤𝑙𝑘𝑤 = 𝑙𝑘𝑤 (𝑔𝑙 − ℎ
𝑢

𝑣
) (56)

Then we look for an equation to describe ¤𝑔𝑙 :

¤𝑔𝑙 =
¤𝑍𝐿𝑤
𝐿2𝑤

− 𝑍 ¤𝐿𝑤
𝐿2𝑤

=
𝑍

𝐿𝑤

[
¤𝑍
𝑍
−

¤𝐿𝑤
𝐿𝑤

]
(57)

¤𝑔𝑙 = 𝑔𝑙 (𝑔𝑧 − 𝑔𝑙) = 𝑔𝑙 (𝜑0 − 𝜑1
𝑖𝑙

𝑤
𝑙𝑤 − 𝑔𝑙) (58)

Finally, since 𝑙𝑘𝑤 =
𝐿𝑤
𝐾

=
𝐿𝑤
𝑌
𝑌
𝐾
= 𝑙𝑤

𝑢
𝑣
, we must have:

𝑙𝑤 =
𝑙𝑘𝑤𝑣

[𝑣(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)𝑙𝑘𝑤 ]/(𝑠 − ℎ)
=

(𝑠 − ℎ)
(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)

(59)

Such that:
¤𝑔𝑙 = 𝑔𝑙

[
𝜑0 − 𝜑1

𝑖𝑙

𝑤

(𝑠 − ℎ)
(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)

− 𝑔𝑙
]

(60)
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Appendix E - Derivation of the Jacobian matrix and its Routh-
Hurwitz determinants

Since our Jacobian matrix is given by: 
ℎℎ ℎ𝑘 ℎ𝑔

𝑘ℎ 𝑘𝑘 𝑘𝑔

𝑔ℎ 𝑔𝑘 𝑔𝑔

 (61)

Where ℎℎ is defined as the partial derivative of ¤ℎ with respect to ℎ, ℎ𝑘 with respect to 𝑙𝑘𝑤 , ℎ𝑔
with respect to 𝑔𝑙 and ℎ𝑤 with respect to 𝑙𝑤. 𝑘𝑥 , 𝑔𝑥 and 𝑤𝑥 represent the partial derivatives of ¤𝑙𝑘𝑤 ,
¤𝑔𝑙 and ¤𝑙𝑤, respectively. Since it is easy to see that 𝑔𝑘 = 0, we can write our [𝐽 − 𝜆𝐼] matrix as:


(ℎℎ − 𝜆) ℎ𝑘 ℎ𝑔

𝑘ℎ (𝑘𝑘 − 𝜆) 𝑘𝑔

𝑔ℎ 0 (𝑔𝑔 − 𝜆)

 (62)

Therefore, 𝐷𝑒𝑡 [𝐽 − 𝜆𝐼] will be given by:

(𝑔ℎ)
ℎ𝑘 ℎ𝑔 +(𝑔𝑔 − 𝜆)

(ℎℎ − 𝜆) ℎ𝑘

(𝑘𝑘 − 𝜆) 𝑘𝑔 𝑘ℎ (𝑘𝑘 − 𝜆)
(63)

𝐷𝑒𝑡 [𝐽 − 𝜆𝐼] = 𝑔ℎ [𝑘𝑔ℎ𝑘 − ℎ𝑔 (𝑘𝑘 − 𝜆)] + (𝑔𝑔 − 𝜆) [(ℎℎ − 𝜆) (𝑘𝑘 − 𝜆) − ℎ𝑘 𝑘ℎ] (64)

= 𝑔ℎ𝑘𝑔ℎ𝑘 − 𝑔ℎℎ𝑔𝑘𝑘 + 𝑔ℎℎ𝑔𝜆 − 𝑔𝑔ℎ𝑘 𝑘ℎ + ℎ𝑘 𝑘ℎ𝜆
+(𝑔𝑔 − 𝜆) [ℎℎ𝑘𝑘 − 𝜆(ℎℎ + 𝑘𝑘 ) + 𝜆2]

(65)

= 𝑔ℎ𝑘𝑔ℎ𝑘 − 𝑔ℎℎ𝑔𝑘𝑘 + 𝑔ℎℎ𝑔𝜆 − 𝑔𝑔ℎ𝑘 𝑘ℎ + ℎ𝑘 𝑘ℎ𝜆
+𝑔𝑔ℎℎ𝑘𝑘 − 𝑔𝑔𝜆(ℎℎ + 𝑘𝑘 ) + 𝑔𝑔𝜆2 − 𝜆ℎℎ𝑘𝑘 + 𝜆2(ℎℎ + 𝑘𝑘 ) − 𝜆3

(66)

= −𝜆3 + 𝜆2(ℎℎ + 𝑘𝑘 + 𝑔𝑔) + 𝜆(ℎ𝑘 𝑘ℎ + 𝑔ℎℎ𝑔 − ℎℎ𝑘𝑘 − 𝑔𝑔ℎℎ − 𝑔𝑔𝑘𝑘 )
+𝑔𝑔ℎℎ𝑘𝑘 + 𝑔ℎ𝑘𝑔ℎ𝑘 − 𝑔ℎℎ𝑔𝑘𝑘 − 𝑔𝑔ℎ𝑘 𝑘ℎ

(67)

= 𝜆3 − 𝜆2(ℎℎ + 𝑘𝑘 + 𝑔𝑔) + 𝜆(ℎℎ𝑘𝑘 + 𝑔𝑔ℎℎ + 𝑔𝑔𝑘𝑘 − ℎ𝑘 𝑘ℎ − 𝑔ℎℎ𝑔)
−𝑔𝑔ℎℎ𝑘𝑘 − 𝑔ℎ𝑘𝑔ℎ𝑘 + 𝑔ℎℎ𝑔𝑘𝑘 + 𝑔𝑔ℎ𝑘 𝑘ℎ

(68)

Which then gives us the following characteristic polynomial:

𝑎0𝜆
3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 (??)

Where: 𝑎0 = 1; 𝑎1 = −(𝑔𝑔 + ℎℎ + 𝑘𝑘 ); 𝑎2 = (ℎℎ𝑘𝑘 + 𝑔𝑔ℎℎ + 𝑔𝑔𝑘𝑘 − ℎ𝑘 𝑘ℎ − 𝑔ℎℎ𝑔) and 𝑎3 =
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𝑔ℎℎ𝑔𝑘𝑘 + 𝑔𝑔ℎ𝑘 𝑘ℎ − 𝑔𝑔ℎℎ𝑘𝑘 − 𝑔ℎ𝑘𝑔ℎ𝑘 The Routh-Hurwitz matrix then becomes:


𝑎1 𝑎3 0

𝑎0 𝑎2 𝑎4

0 𝑎1 𝑎3

 (69)

From Gandolfo (2010, p.239, p.269), the conditions for local stability around the two steady-state
equilibria are given by: 

Δ1 = 𝑎1 > 0

Δ2 = 𝑎2𝑎1 − 𝑎0𝑎3 > 0 and

Δ3 = 𝑎3Δ2 > 0

Appendix F - Derivatives of the Jacobian matrix evaluated at the
steady state

ℎℎ =
𝜕 ¤ℎ
𝜕ℎ

= 𝛾

[𝑣𝑠(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)𝑙𝑘𝑤
(𝑠 − ℎ)2

− 𝑢𝑛
]
=

𝛾𝑢𝑛ℎ
∗

(𝑠 − ℎ∗) (70)

ℎ𝑘 =
𝜕 ¤ℎ
𝜕𝑙𝑘𝑤

=
ℎ𝛾𝑣(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)

(𝑠 − ℎ) =
ℎ∗𝛾𝑣

𝑙∗𝑤
(71)

ℎ𝑔 =
𝜕 ¤ℎ
𝜕𝑔𝑙

=
ℎ𝛾𝑣𝑙𝑘𝑤

(𝑠 − ℎ) =
ℎ∗𝛾𝑙∗𝑤𝑢𝑛
(𝑠 − ℎ∗) (72)

𝑘ℎ =
𝜕 ¤𝑙𝑘𝑤
𝜕ℎ

= −
𝑠(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)𝑙2𝑘𝑤

(𝑠 − ℎ)2
= −

𝑢2𝑛𝑙
∗
𝑤𝑠

𝑣2(𝑠 − ℎ∗)
(73)

𝑘𝑘 =
𝜕 ¤𝑙𝑘𝑤
𝜕𝑙𝑘𝑤

= 𝑔𝑙 −
2ℎ(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)𝑙𝑘𝑤

(𝑠 − ℎ) = −𝑔∗𝑧 (74)

𝑘𝑔 =
𝜕 ¤𝑙𝑘𝑤
𝜕𝑔𝑙

= 𝑙𝑘𝑤

[
1 −

𝑙𝑘𝑤ℎ

(𝑠 − ℎ)

]
=
𝑙∗𝑤𝑢𝑛
𝑣

[
1 −

𝑙∗𝑤𝑢𝑛ℎ
∗

𝑣(𝑠 − ℎ∗)

]
(75)

𝑔ℎ =
𝜕 ¤𝑔𝑙
𝜕ℎ

=
𝑔𝑙𝑖𝑙𝜑1

𝑤(𝑔𝑙 + (𝛼2 − 𝛼1)𝑖𝑙)
=

𝑔∗𝑧 𝑖𝑙𝜑1
𝑤(𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙)

(76)

𝑔𝑔 =
𝜕 ¤𝑔𝑙
𝜕𝑔𝑙

= [𝜑0 − 𝜑1 𝑖𝑙𝑤
(𝑠−ℎ)

(𝑔𝑙+(𝛼2−𝛼1)𝑖𝑙) − 𝑔𝑙] + 𝑔𝑙 [−1 − 𝜑1
𝑖𝑙
𝑤

(𝑠−ℎ) (−1)
(𝑔𝑙+(𝛼2−𝛼1)𝑖𝑙)2

]
= 𝑔∗𝑧 [−1 + 𝜑1

𝑖𝑙 (𝑠−ℎ∗)
𝑤(𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙)2

] = 𝑔∗𝑧 [−1 +
(𝑔∗𝑧−𝜑0)

(𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙) ]
(77)
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Appendix G - Trace of the Jacobian matrix

𝑇 (𝐽∗) = ℎ∗ℎ + 𝑘
∗
𝑘 + 𝑔

∗
𝑔 (78)

We also know from the previous derivation of the jacobian in steady-state that:
i) ℎ∗

ℎ
=

𝛾𝑢𝑛ℎ
∗

(𝑠−ℎ∗) ;
ii) 𝑘∗

𝑘
= −𝑔∗𝑧 ;

iii) 𝑔∗𝑔 = 𝑔∗𝑧 [−1 +
(𝑔∗𝑧−𝜑0)

(𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙) ].

As a result, we must also have that:

𝑇 (𝐽∗) = 𝛾𝑢𝑛ℎ
∗

(𝑠 − ℎ∗) − 2𝑔∗𝑧 + 𝑔∗𝑧
[ (𝑔∗𝑧 − 𝜑0)
(𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙)

]
(79)

Since:
ℎ∗ =

𝑣𝑔∗𝑧
𝑢𝑛

(80)

Then:
𝑇 (𝐽∗) =

𝑔∗𝑧

[
𝛾𝑣(𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙)−2(𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙) (𝑠−ℎ∗)+(𝑔∗𝑧−𝜑0) (𝑠−ℎ∗)

(𝑠−ℎ∗) (𝑔∗𝑧+(𝛼2−𝛼1)𝑖𝑙)

] (81)

However, since we are already assuming that 𝑔∗𝑧 > 0, (𝑠 − ℎ∗) > 0 and (𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙) > 0,
then in order for 𝑇 (𝐽∗) < 0, we must have:

𝛾𝑣(𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙) − 2(𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙) (𝑠 − ℎ∗) + (𝑔∗𝑧 − 𝜑0) (𝑠 − ℎ∗) < 0 (82)

And since, once again:

ℎ∗ =
𝑣𝑔∗𝑧
𝑢𝑛

(83)

Then:
𝛾𝑣(𝑔∗𝑧 + (𝛼2 − 𝛼1)𝑖𝑙) − (𝑠 −

𝑣𝑔∗𝑧
𝑢𝑛

) [𝑔∗𝑧 + 2(𝛼2 − 𝛼1)𝑖𝑙 + 𝜑0] < 0 (84)

And:
𝛾𝑣𝑔∗𝑧 + 𝛾𝑣(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠𝑔∗𝑧 − 𝑠2(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠𝜑0
+ 𝑣𝑔

∗
𝑧

𝑢𝑛
𝑔∗𝑧 +

𝑣𝑔∗𝑧
𝑢𝑛

2(𝛼2 − 𝛼1)𝑖𝑙 +
𝑣𝑔∗𝑧
𝑢𝑛
𝜑0 < 0

(85)

Therefore, in order to have a negative trace we will need:

𝑔2𝑧 + 𝑔𝑧 (𝛾𝑢𝑛 −
𝑠𝑢𝑛

𝑣
+ 2(𝛼2 − 𝛼1)𝑖𝑙 + 𝜑0) +

𝑢𝑛

𝑣
(𝛾𝑣(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠2(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠𝜑0) < 0 (86)

Which results in the following constraint on 𝑔∗𝑧 :

−𝑏1 −
√︃
𝑏21 − 4𝑐1 < 𝑔

∗
𝑧 < −𝑏1 +

√︃
𝑏21 − 4𝑐1 (87)
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Where:
𝑏1 = 𝛾𝑢𝑛 −

𝑠𝑢𝑛

𝑣
+ 2(𝛼2 − 𝛼1)𝑖𝑙 + 𝜑0

And:
𝑐1 =

𝑢𝑛

𝑣
(𝛾𝑣(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠2(𝛼2 − 𝛼1)𝑖𝑙 − 𝑠𝜑0)

As expected, one of the necessary conditions for the local stability of the steady state results
in constraints on the autonomous demand growth rate, which is directly related to limits in the
debt-to-income ratio evaluated at the steady state:

𝑤

𝑖𝑙𝜑1

[
𝜑0 + 𝑏1 −

√︃
𝑏21 − 4𝑐1

]
< 𝑙∗𝑤 <

𝑤

𝑖𝑙𝜑1

[
𝜑0 + 𝑏1 +

√︃
𝑏21 − 4𝑐1

]
(88)
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